Code: AE11

StudentBoun Subject: CONTROL ENGL

ROLL NO.

AMIETE - ET (OLD SCHEME)

Time: 3 Hours

OCTOBER 2012

xy.com Max. Marks: 10

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Ouestions in all.

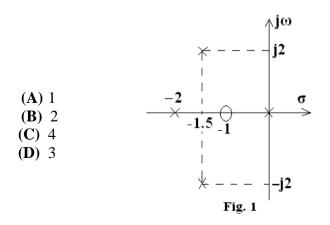
- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the 0.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

0.1 Choose the correct or the best alternative in the following:

a. Area under the unit Impulse function is

(A)	Infinity	(B) Unity
(C)	Zero	(D) None of the above

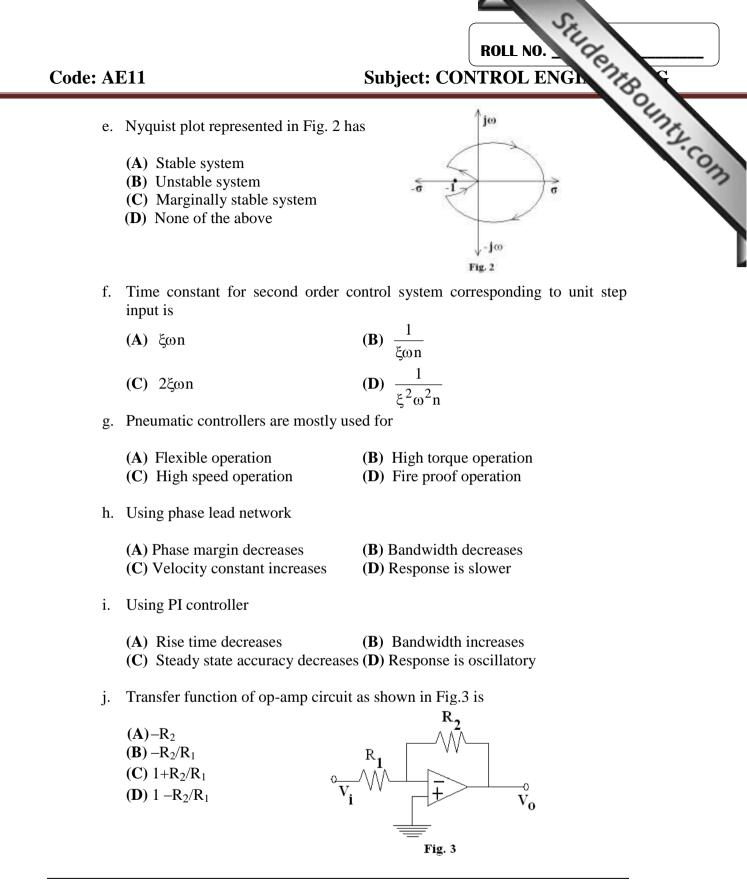
b. One of the following method is used to determine the relative stability of a control system


(A)	Routh stability criterion	(B) Root locus method
(C)	Bode plot	(D) None of these

c. The transfer function of a system is

1000 T.F= $\frac{1000}{(1+0.1s)(1+0.01s)}$ the corner frequencies are

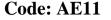
(A) 0.1 and 0.01	(B) –0.1 and –0.01
(C) 10 and 100	(D) -10 and -100


d. Number of Asymptotes in root locus for the system having open loop poles and zeros indicated in Fig. 1, below are

AE11 / OCTOBER - 2012

1

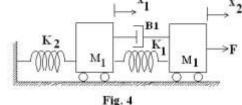
AMIETE - ET (OLD SCHEME)

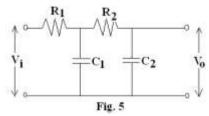

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. Draw block diagram of closed loop system and write its advantages and disadvantages. (6)

AE11 / OCTOBER - 2012

2


AMIETE - ET (OLD SCHEME)



ROLL NO.

StudentBounty.com b. Draw the analogous electrical circuit of the system shown in Fig. 4, using F-V analogy.

- c. Draw Transient response for second order system corresponding to unit step input and mark various time response specification on it. (6)
- Q.3 a. Draw block diagram for electrical circuit shown in Fig. 5 and determine transfer function using Mason's gain formula. (8)

- b. Discuss working of the following: (i) Synchro transmitter (ii) Synchro control transformer. (8)
- a. Explain action of PID controller. Write its transfer function and draw time **Q.4** response curve. (8)
 - b. Write effect of feedback on (i) Overall gain of system (ii) Stability of system.

a. Sketch Bode plot for the transfer function $G(s) = \frac{1000}{(1+0.1s)(1+0.001s)}$ Q.5

Determine

- (i) Phase margin
- (ii) Gain margin
- (iii) Stability of system.
- b. Draw frequency response curve for second order system and define:
 - (i) Resonant peak
 - (ii) Bandwidth
 - (iii) Cut-off frequency.

Q.6 Draw root locus for unity feedback system of open loop transfer function $G(s) = \frac{K}{s(s+4)(s+5)}$ and design a lag compensator for $K_v \ge 5$ $\xi = 0.707$ (16)and $\omega_n = 2 \text{ rad/sec}$

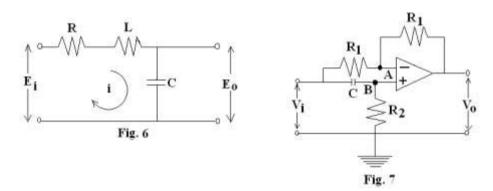
AE11 / OCTOBER - 2012

3

AMIETE - ET (OLD SCHEME)

(8)

(10)


(6)

Code: AE11

Subject: CONTROL ENGL

ROLL NO.

- StudentBounty.com Q.7 Consider open loop transfer function of a unity feedback system. $G(s) = \frac{K}{s(1+0.2s)}$. Design the compensation network as per given requirements (i) Velocity error constant is at least 20 and (ii) Phase margin should be 44°. (16) **Q.8**
 - a. For unity feedback control system the forward path transfer function is $G(s) = \frac{20}{s(s+2)(s^2+2s+20)}$. Determine the steady state error of the system when input is (i) 5u(t) (ii) 5r(t) (8)
 - b. A unity feedback system has open loop transfer function $G(s) = \frac{K(s+13)}{s(s+3)(s+7)}$. Using Routh criterion, calculate the range of K for the system to be stable. (8)
- Q.9 Find transfer function of the circuits as shown in Fig 6 and Fig. 7. (8+8)

4