Code: AE07 Subject: NUMERICAL ANALYSIS & COMPUTER PR

AMIETE - ET (OLD SCHEME)

Time: 3 Hours

OCTOBER 2012

ROLL NO. CORPTONIC INC. PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE OUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Choose the correct or the best alternative in the following: 0.1

 (2×10)

- a. Consider the following statements:
 - (i) A switch expression can be of any type.
 - (ii) The default case is optional in the switch statement.
 - Which of the following statements are correct?

(\mathbf{A}) (i) only	(B) (ii) only
(C) Both (i) & (ii)	(D) None of these

b. The error quantity which must be added to the finite representation of a computed number in order to make it the true representation of that number is called.

(A) relative error	(B) absolute error
(C) round-off error	(D) truncation error

- c. Consider the following statements.
 - C is a free-form language (i)
 - (ii) In a C program, # define is a preprocessor compiler directive

Which of the following statements are correct?

(A) (i) only	(B) (ii) only
(C) (i) and (ii) both	(D) none the these

d. In bisection method, if the permissible error is \in , then the approximate number of iteration may be determined from the formula. [It is assumed that a root of f(x) = 0 lies in the interval (a_0, b_0) and n denotes the number of iterations]

(A)
$$n \ge \frac{\log(b_0 - a_0) - \log \epsilon}{\log 2}$$
 (B) $n \le \frac{\log(b_0 - a_0) - \log \epsilon}{\log 2}$
(C) $n \ge \frac{\log(b_0 + a_0) - \log \epsilon}{\log 2}$ (D) $n \le \frac{\log(b_0 + a_0) - \log \epsilon}{\log 2}$

AE07 / OCTOBER - 2012

AMIETE - ET (OLD SCHEME)

Code: AE07

- ROLL NO. Contraction of the second se Subject: NUMERICAL ANALYSIS & COMPUTER PR e. Consider the following statements: (i) If a matrix A is diagonally dominant then no pivoting is necessary (ii) If a matrix A is real, symmetric and positive definite then no pivoting is necessary Which of the above statements are correct? (**A**) (i) only **(B)** (ii) only (**C**) Both (i) & (ii) (D) None of these
 - f. The Cholesky factorisation of a symmetric matrix A is $A = LL^{T}$

If $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 8 & 22 \\ 3 & 22 & 82 \end{bmatrix}$ and $L = \begin{bmatrix} 1 & 0 & 0 \\ 2 & a & 0 \\ 3 & b & c \end{bmatrix}$, a < 0, c > 0,

then, the values of (a,b,c) are

(A) (2, 8, 3)	(B) (2, 4, 3)
(C) (2, -8, -3)	(D) (2, -4, 3)

- g. Netwon's backward difference formula
 - (A) can be expressed in terms of forward differences
 - (B) is more suitable when we have to interpolate at a point nearer to the initial point
 - (C) is more suitable when we have to interpolate at a point nearer to the end point
 - (D) does not give identical polynomial as obtained by using Netwon's forward difference formula
- h. Consider the following values for the function $f(x) = x^4$.

Х	f(x)
0.4	0.0256
0.6	0.1296
0.8	0.4096

The approximate value of f'(0.8) using the method based on quadratic interpolation is

(A)	1.84	(B)	2.048
(C)	1.82	(D)	4.4

i. Find the approximate value of

$$I = \int_{0}^{1} \frac{dx}{1+x}$$

Using Simpson's rule

(A) 0.75	(B) 0.7050
(C) 0.6915	(D) 0.6944

AE07 / OCTOBER - 2012

2

AMIETE - ET (OLD SCHEME)

Code: AE07 Subject: NUMERICAL ANALYSIS & COMPUTER PR

- StudentBour Which of the method use a weighted average of slopes on the given in į. instead of a single slope?
 - (A) Taylor's method (C) Euler's Method
- (B) Runge-Kutta method (D) None of these

ROLL NO.

MING

(8)

(8)

ty.com

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- a. Write a C program to calculate the real roots of the equation $e^{x} 3x^{2} = 0$ using Q.2 bisection method. Use an error tolerance of $\in = 10^{-5}$, maximum number of iterations 40 and [0,1] as the interval containg the root. (8)
 - b. Find the iterative methods based on Newton Raphson method for finding $N^{1/k}$, where N is a positive real number. Hence, estimate N=18 for K=3, correct to two decimal places. (8)
- **Q.3** a. Give the applications of linked lists with suitable examples. (8)
 - b. Determine the inverse of the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 4 & 3 & -1 \\ 3 & 5 & 3 \end{bmatrix}$$

using partition method. Hence solve the system of equation Ax = b, where $b = [1, 6, 4]^T$

Q.4 a. Solve the following system of equations by LU decomposition Method. (8) $x_1 + x_2 - 2x_3 = 3$ $4x_1 - 2x_2 + x_3 = 5$

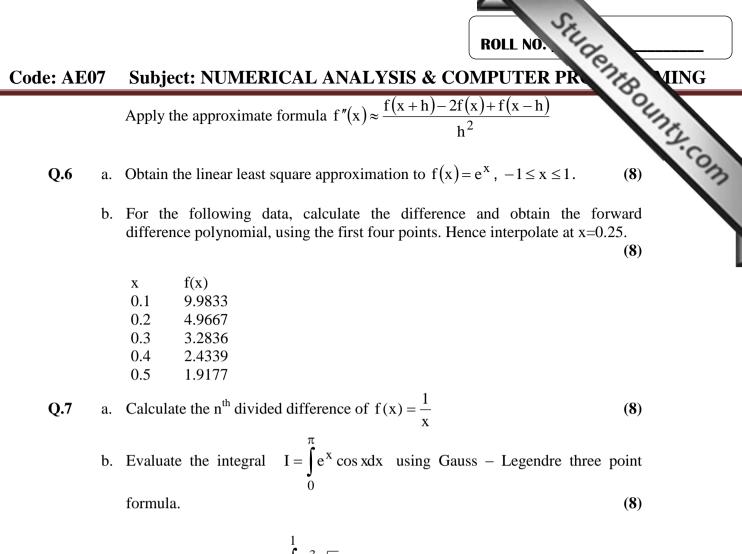
$$3x_1 - x_2 + 3x_3 = 8$$

b. Solve the following system of equation using Gauss-Seidel method (show upto 3 iterations),

$$4x_1 + x_2 + 2x_3 = 4$$

$$x_1 + x_2 + 3x_3 = 3$$

$$3x_1 + 5x_2 + x_3 = 7$$


- Q.5 a. Expand $\ln(1+x)$ in a Taylor series expansion about $x_0 = 1$ through terms of degree 4. Obtain a bound on the truncation error when approximating ln(1.2)using this expansion. (8)
 - b. By use of repeated Richardson extrapolation, find f''(0.3) from the following values:

Х	f(x)
0.1	17.60519
0.2	17.68164
0.3	17.75128
0.4	17.81342
0.5	17.86742

AE07 / OCTOBER - 2012

3

AMIETE - ET (OLD SCHEME)

- Q.8 a. Evaluate the integral $I = \int_{0}^{1} x^{3} \sqrt{x} dx$ using Simpson's rule taking eight intervals. Also obtain upper bound of the error. (8)
 - b. Given the following values of $f(x) = \ln x$, find the approximate value of f''(2.0) using quadratic interpolation. Also obtain an upper bound on the error.(8)
 - x f(x) 2.0 0.69315
 - 0.78846
 - 2.6 0.95551
 - Q.9 a. Given $\frac{dy}{dx} = \frac{1}{x+y}$ where y(0) = 1, find y (0.5) and y (1.0) using Runge Kutta fourth order method, (take h = 0.5). (8)
 - b. Given the following equation x⁴-x-10=0, determine the initial approximations for finding the smallest positive root. Use these to find the root correct to three decimal places with Secant method. (8)

AE07 / OCTOBER - 2012

4