Code: AE06/AC04/AT04

Subject: SIGNALS & SYSTEN

ROLL NO.

AMIETE – ET/CS/IT (OLD SCHEME)

Time: 3 Hours

OCTOBER 2012

STEM Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

 (2×10)

a. Signal $x(t) = 2\cos(0.5t)$ represents a

(A) Full wave rectified signal	(B) Half wave rectified signal
(C) Sinusoidal signal	(D) Cosine signal.

b. If $f_{xy}(x, y) = f_x(x) f_y(y)$ then x and y variables are

(A) correlated	(B) independent
(C) dependent	(D) cross-correlated.

c. LTI system represented by y(n) = x(n) + x(n-1) is

(A) always linear	(B) linear if n=1
(C) non-linear	(D) linear if $n = -1$

d. To find harmonics of a signal ______ is used.

- (A) Fourier transforms(B) Fourier series(C) Z-transform(D) Laplace transform
- e. Real part of Fourier transform is _____function of frequency.

(A) positive	(B) odd
(C) even	(D) impulse

f. If y(t) = dx(t) / dt then H(jw) will be

(A) jw	(B) –jw
(C) w	(D) jw $\mathbf{x}(t)$.

- g. The signal $x(n) = \delta(n)$, then $X(e^{jw})$ results as
 - (A) 1 (P) A

C	ode: AE06/AC04/AT04	ROLL NO. Subject: SIGNALS & SYSTEM ult in (B) Always 1 (D) can't decide from given data.)
ł	n. $\delta(n-1) * \delta(n+1)$ will res	ult in	
	(A) Zero (C) n	(B) Always 1(D) can't decide from given data.	3
i	. If $d y(t)/dt + 3y(t) = x(t)$, the s	ystem function will be	
	 (A) 1/(S+3) (C) S+3 	(B) 1/(S-3) (D) S-3	
j	. The ROC does not contain any	y	
	(A) other ROC(C) zeros	(B) unit circle(D) poles	

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2	a.	If $x(n) = \{ 1,1,1,1,1/4,1/4 \}$ (i) Sketch $x(n)$. (ii) Sketch $x(n).u(2-n)$ (iii) Sketch $x(n-1).\delta(n-3)$.	(6)
	b.	Prove that	
		(i) $\delta(n) = u(n) - u(n-1).$ (ii) $y(t) = x(2t)$ is causal system. (iii) $x(t) = A e^{-at} u(t)$ is an energy signal.	(6)
	c.	Differentiate continuous-time and discrete-time systems.	(4)
Q.3	a.	 For the signal x(n) = 1 + sin (2π/N) n + 3 cos(2π/N) n + cos(2πn/N+90°). (i) Determine the Fourier series co-efficients for N = 5 for the above signal. (ii) Plot real and imaginary parts of the Fourier series co-efficients. (iv) Plot magnitude and phase of the same Fourier series co-efficients. 	e (9)
	b.	Plot impulse train $\delta(t)$ with period T. Determine its Fourier series representation. State its area of application(s).	s (7)
Q.4	a.	If G(jw) is the Fourier transform of the signal $g(t) = 2/(1+t^2)$. Determine G(jw). Comments on the result obtained.	e (8)
	b.	For the signal $x(n) = cos(w_o n)$, determine and sketch its discrete time Fourier transforms. Assume $w_o = (2 \pi / 5)$.	e (8)
Q.5	a.	First-order system's differential equation is described by $\tau dy(t)/dt + y(t) =$	=

www.StudentBounty.com Homework Help & Pastpapers

		SE	
		ROLL NO.	
	Cod	le: AE06/AC04/AT04 Subject: SIGNALS & SYSTEM	THE
		 (i) Obtain frequency response (ii) Obtain impulse response (iii) Obtain step response of the system (iv) If τ is made smaller, what will be its effect on time response of the system? 	ливоцили, солл (8)
	b.	Define and explain interpolation. Enlist its various types. Discuss any one interpolation method in detail.	e ⁽⁸⁾
Q.6	a.	State and prove initial value theorem and final value theorem for Z-transform. Obtain the initial and final value of $x(z) = 2 + 3z^{-1} + 4z^{-2}$.	(8)
	b.	Explain the following properties for Z- transform.(i) time shifting(ii) time reversal(iii) time expansion(iv) scaling	(8)
Q.7	a.	For an LTI system , the following data is given (i) The system is causal (ii) The system function is rational and has only two poles at $s = -2$ and $s = +4$. (iii) If $x(t) = 1$, then $y(t) = 0$. (iv) The value of the impulse response at $t = 0^+$ is 4. Determine system function from the above data using Laplace transformation only.	
	b.	Obtain the Laplace transform of (i) $x(t) = t e^{-at} u(t)$ (ii) $x(t) = [2 t e^{-t} - te^{-t} + 3 e^{-2t}]u(t)$	(8)
Q.8	a.	If $X(S) = 1/\{(s + 1) (s + 2)\}$ with $Re\{s\} > -1$; obtain inverse Laplace Transform. Also, sketch pole-zero plot clearly indicating ROC.	e (8)
	b.	A causal LTI system described by the difference equation $y(n) + 3y(n-1) = x(n)$ with system initially relaxed. Obtain $y(n)$ if $x(n) = \alpha u(n)$, where α is a given constant using unilateral Z-transformation.	
Q.9	a.	Write short note on:-	
		(i) Cross-spectral density between input and output.(ii) Cross-correlation between input and output.	(8)
	b.	If an amplitude X of a Gaussian signal $x(t)$ has a mean value of 2 and mean square value of 3. Determine and state its PDF.	¹ (8)

www.StudentBounty.com Homework Help & Pastpapers