Code: AE03

Subject: APPLIED MECHAN

ROLL NO.

AMIETE - ET (OLD SCHEME)

Time: 3 Hours

OCTOBER 2012

 (2×10)

StudentBounty.com PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE OUESTION PAPER.

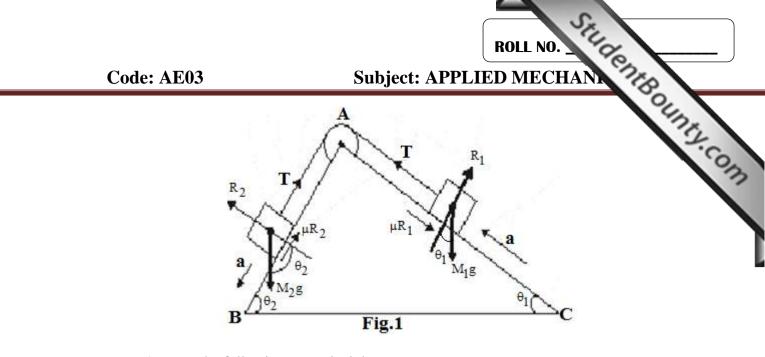
NOTE: There are 9 Questions in all.

- Ouestion 1 is compulsory and carries 20 marks. Answer to 0.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the 0.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Choose the correct or the best alternative in the following **Q.1**

a. The moment of inertia of a rectangular section of base (b) and height (h) about an horizontal axis passing through C.G. is given by the reaction.

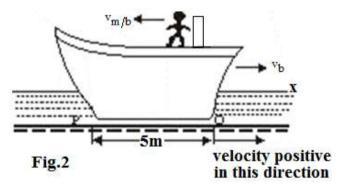
(A)
$$\frac{bh^3}{12}$$
 (B) $\frac{bh^3}{24}$
(C) $\frac{bh^3}{36}$ (D) $\frac{bh^3}{48}$

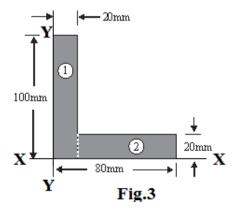

- b. Jet engine works on the principle of
 - (A) Conservation of linear momentum
 - (**B**) Conservation of mass
 - (C) Conservation of energy
 - (D) Conservation of angular momentum
- c. A body rebounds after impacting a fixed smooth surface. If the impact is perfectly elastic, the following is conserved
 - (A) Momentum. **(B)** Kinetic energy.
 - (C) Momentum and Kinetic energy. (D) Velocity.
- d. The relationship $s = u t + \frac{1}{2}at^2$ is applicable to bodies
 - (A) Moving with any type of motion
 - (B) Moving with uniform velocity
 - (C) Moving with uniform acceleration
 - **(D)** Both **(B)** and **(C)**

www.StudentBounty.com omework Help & Pastpap

			ROLL NO.	Stud			
	Cod	le: AE03	Subject: APPLIED MECHA	MATE			
	e.	Roll NO. Bode: AE03 Subject: APPLIED MECHANN e. A framed structure is perfect, if the numbers of members are2j–3, why j is the number of joints 2j–3, why j is the number of joints (A) less than (B) equal to (C) greater than (D) either (A) or (C)					
		(A) less than(C) greater than	 (B) equal to (D) either (A) or (C) 	·com			
	f.	A rigid body in translation					
		 (A) cannot move on a circulat (B) can move along a straight (C) must under go plane motified (D) can move only in a straight 	t or curved path. on only.				
	g.	g. Three forces acting on a rigid body are in equilibrium. They must be					
		(A) coplanar.(C) parallel.	(B) concurrent.(D) collinear.				
	h.	a. A cantilever AB of length L has a moment M applied at its free end. The deflection at the free end B is given as					
		(A) M ² L/EI (C) ML/2EI	(B) ML ² /2EI (D) M ² L/2EI				
	i.	In a cantilever beam the bending moment is maximum at					
		(A) the center(C) the fixed end	(B) the free end(D) any point on the beam				
	j.	Total pressure on a horizontal					
		(A) wA (C) wA \overline{x}	(B) $w\overline{x}$ (D) $wA^2\overline{x}$				
		<i>v e</i>	ons out of EIGHT Questions. n carries 16 marks.				
Q.2	a.	Explain the parallelogram law of forces.		(6)			
	b.	A 7.0 m long ladder rests aga angle of 45°. If a man whose w it, at what distance along the 1 slip?	r, climbs about to				
		The coefficient of friction bet between the ladder and the flo	tween the ladder and the wall is $1/3$ por is $1/2$.	and that (10)			
03	а	Explain the principle of work	and energy for a rigid body	(4)			

Q.3 a. Explain the principle of work and energy for a rigid body. (4)


b. Two blocks of masses M_1 and M_2 are placed on two inclined planes of elevation θ_1 and θ_2 and are connected by a string as shown in (Fig.1). Find the acceleration of masses. The coefficient of friction between the blocks and the plane is H_1


Assume the following numerical data $M_1 = 5kg$, $\theta_1 = 30^\circ$

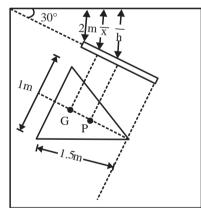
 $M_1 = 5 \text{kg}, \qquad \theta_1 = 30^\circ$ $M_2 = 10 \text{kg}, \qquad \theta_2 = 60^\circ \text{ and } \mu = 0.33 \qquad (12)$

- Q.4 a. Explain Impulse- Momentum Principle.
 - b. A man of mass 50 kg stands at the one end of a 5m long floating boat of mass 250 kg. (Fig.2). If the man walks towards the other end of the boat at a steady rate of 1.0 m/s, determine
 - (i) the velocity of the boat as observed from the ground.
 - (ii) the distance by which the boat gets shifted.

- Q.5 a. Explain stress, strain and Hooke's law.
 - b. Find the position of centroid and moment of Inertia about the X-X and Y-Y axes of the angle section shown in Fig.3. (11)

www.StudentBounty.com Homework Help & Pastpapers (5)

(5)


(11)

			ROLL NO.		
	Cod	le: AE03 Subject: A	PPLIED MECHAN		
Q.6	a.	Define: shear force, bending moment and poi	nt of inflection.	243.	
	b.	point load of 5 KN at 3 meters from A and a p	AB 10 meters long has supports at its ends A and B. It carries a of 5 KN at 3 meters from A and a point load of 5 KN at 7 meters and a uniformly distributed load of 1 KN per meter between the s. Draw SF and BM diagrams for the beam. (10)		
Q.7	a.	Explain: (i) Stream function (ii) veloc	ity potential function. (6)	1	
	b.	č 1 ·	0m. long and is simply supported at the ends. It carries f 100KN at the centre of beam. Calculate the deflection $I = 18 \times 10^8 \text{ mm}^4$ and $E = 200 \text{KN/ mm}^2$ (10)		

- **Q.8** a. Derive the torque equation $\frac{T}{J} = \frac{f_s}{r} \frac{G\theta}{\ell}$ stating all assumptions. (8)
 - b. A circular shaft 45 mm diameter is subjected to a twisting moment of 9000 Nm. Its length is 1m. Find the maximum shear stress and angle of twist.

(4)

- **Q.9** a. Define Pascal's law.
 - b. A triangular plate of 1m base and 1.5 m altitude is immersed in water. The plane of the plate is inclined at 30° with water surface, while the base is parallel to and at a depth of 2m from the water surface. Find the total pressure on the plate and the centre of pressure. (12)

