Code: AC15

Subject: COMPUTER GRAPH

ROLL NO.

AMIETE -CS (OLD SCHEME)

Time: 3 Hours

OCTOBER 2012

Max. Marks:

 (2×10)

studentBounty.com PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE OUESTION PAPER.

NOTE: There are 9 Questions in all.

- Ouestion 1 is compulsory and carries 20 marks. Answer to 0.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the O.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

a. A 512x512 raster requires

(A)	2^{12}	(B)	2^{18}
(C)	2^{8}	(D)	2^{10}

b. Aliasing means

(A) Rendering effect	(B) Shading effect
(C) Staircase effect	(D) Cueing effect

c. The slope of the line joining the points (3,0) and (5,0) is

(A)	0	(B)	1
(C)	2	(D)	3

d. The technique of using a minimum number of intensity levels to obtain increased visual resolution is called

(A) Dithering	(B) Halftoning
(C) Depth cueing	(D) Rendering

e. If two bits are zeros and two bits are ones in a code of a sub-region in Cohen–Sutherland line clipping algorithm then the sub region is

(A)	Corner region	(B)	Middle region
(C)	Central region	(D)	None of these

1

- f. Perspective projection is characterized by the
 - (A) View plane alone
 - (B) Direction of projection and the view plane
 - (C) Center of projection and the view plane
 - (**D**) Center of projection alone

AC15 / OCTOBER - 2012

AMIETE -CS (OLD SCHEME)

www.StudentBounty.com omework Help & P

Code: AC15

Subject: COMPUTER GRAPH

ROLL NO.

- g. The blending functions of Bezier curves are
 - (A) Splines
 - (C) Lagrangian polynomials
- (B) Bernstein polynomials
- (D) Newton polynomials
- StudentBounty.com h. The three dimensional matrix transformation for reflection of a point with respect to zx-plane is

	-1	0	0	0]		[1	0	0	0
(\mathbf{A})	0	1	0	0	(D)	0	1	0	0
(A)	0	0	1	0	(B)	0	0	-1	0
	0	0	0	1		0	0	0	1
	[1	0	0	0		[1	0	0	0
(\mathbf{C})	-1	0	0	0	(D)	0	-1	0	0
(C)	0	0	1	0	(D)	0	0	1	0
	0	0	0	1		0	0	0	1

Axonometric projection is i.

(A) An orthographic projection	(B) A perspective projection
(C) An oblique projection	(D) A multiview projection

- Painter's algorithm is also called j.
 - (A) Scan line algorithm (C) Depth sort algorithm
- (B) Subdivision algorithm
- (D) Rendering algorithm

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2	a.	Explain the following physical Interact	ive devices	
		(i) Tablets (ii) Joystick	
		(iii) Trackball (iv	v) Light Pen	(8)
	b.	Using Bresenham's algorithm, scan co radius 5 units.	onvert a circle with centre (0,0) and	(8)
Q.3	a.	Reflect the diamond-shaped polygon $C(1,0)$ and $D(0,2)$ about the horizontal	whose vertices are A(-1,0), B(0,-2), line y=2.	(8)
	b.	Describe two-point and three-point per-	spective projections for a cube.	(8)

AC15 / OCTOBER - 2012

2

AMIETE -CS (OLD SCHEME)

Code:	AC15

(Cod	e: AC15	ROLL N Subject: COMPUTER G	o. Allachter
Q.4	a.	Describe Obl	ique parallel projections using suitable diagram.	(8) OUNT
	b.	Explain the examples.	sweep representations of solid modeling. G	ive suitable (8)
Q.5	a.	Describe the	scan line Z-buffer algorithm.	(8)
	b.	Explain the F	ainter's algorithm for hidden surface removal.	(8)
Q.6	a.	Discuss adva another.	intages and disadvantages of various shading mod	els over one (8)
	b.	Describe the	Gouraud shading method for rendering an object.	(8)
Q.7		Explain the f	ollowing:	
		(i) (ii) (iii) (iv)	Raster animation. Key-frame systems Morphing Simulating accelerations	(4 × 4)
Q.8	a.	Describe the	properties of Bezier curves.	(8)
	b.	Explain the C	Cohen-Sutherland subdivision algorithm.	(8)
Q.9		Write short n	otes on any FOUR the following:	
		 (i) Periodic (ii) Aliasing (iii) 3-D tran (iv) Cubic sp (v) Back- fa 	and non-periodic B-spline curves. and Half toning sformations pline curves ace detection	(4 × 4)

AC15 / OCTOBER - 2012

3