AMIETE -CS (OLD SCHEME)

Time: 3 Hours

OCTOBER 2012

Max. Marks: 10
please write your roll no. at the space provided on each PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. A 512×512 raster requires
(A) 2^{12}
(B) 2^{18}
(C) 2^{8}
(D) 2^{10}
b. Aliasing means
(A) Rendering effect
(B) Shading effect
(C) Staircase effect
(D) Cueing effect
c. The slope of the line joining the points $(3,0)$ and $(5,0)$ is
(A) 0
(B) 1
(C) 2
(D) 3
d. The technique of using a minimum number of intensity levels to obtain increased visual resolution is called
(A) Dithering
(B) Halftoning
(C) Depth cueing
(D) Rendering
e. If two bits are zeros and two bits are ones in a code of a sub-region in Cohen-Sutherland line clipping algorithm then the sub region is
(A) Corner region
(B) Middle region
(C) Central region
(D) None of these
f. Perspective projection is characterized by the
(A) View plane alone
(B) Direction of projection and the view plane
(C) Center of projection and the view plane
(D) Center of projection alone
g. The blending functions of Bezier curves are
(A) Splines
(B) Bernstein polynomials
(C) Lagrangian polynomials
(D) Newton polynomials
h. The three dimensional matrix transformation for reflection of a point with respect to zx -plane is
(А) $\left[\begin{array}{cccc}-1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
(B) $\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
(C) $\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
(D) $\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
i. Axonometric projection is
(A) An orthographic projection
(B) A perspective projection
(C) An oblique projection
(D) A multiview projection
j. Painter's algorithm is also called
(A) Scan line algorithm
(B) Subdivision algorithm
(C) Depth sort algorithm
(D) Rendering algorithm

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q. 2 a. Explain the following physical Interactive devices
(i) Tablets
(ii) Joystick
(iii) Trackball
(iv) Light Pen
b. Using Bresenham's algorithm, scan convert a circle with centre $(0,0)$ and radius 5 units.
Q. 3 a. Reflect the diamond-shaped polygon whose vertices are $\mathrm{A}(-1,0), \mathrm{B}(0,-2)$, $\mathrm{C}(1,0)$ and $\mathrm{D}(0,2)$ about the horizontal line $\mathrm{y}=2$.
b. Describe two-point and three-point perspective projections for a cube.
Q. 4 a. Describe Oblique parallel projections using suitable diagram.
b. Explain the sweep representations of solid modeling. Give suitable examples.
Q. 5 a. Describe the scan line Z-buffer algorithm.
b. Explain the Painter's algorithm for hidden surface removal.
Q. 6 a. Discuss advantages and disadvantages of various shading models over one another.
b. Describe the Gouraud shading method for rendering an object.
Q. 7 Explain the following:
(i) Raster animation.
(ii) Key-frame systems
(iii) Morphing
(iv) Simulating accelerations
Q. 8 a. Describe the properties of Bezier curves.
b. Explain the Cohen-Sutherland subdivision algorithm.
Q. 9 Write short notes on any FOUR the following:
(i) Periodic and non-periodic B-spline curves.
(ii) Aliasing and Half toning
(iii) 3-D transformations
(iv) Cubic spline curves
(v) Back- face detection

