Subject: BASIC ELECTRONICS & DIGITA Code: AC03/AT03

## AMIETE - CS/IT (OLD SCHEME)

Time: 3 Hours

# **OCTOBER 2012**

ROLL NO.

StudentBounty.com PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

### NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated

#### Choose the correct or the best alternative in the following: **Q.1**

 $(2 \times 10)$ 

a. The measurement of which one of the following will reveal the sign of charge carriers?

| (A) Conductivity     | ( <b>B</b> ) Mobility           |
|----------------------|---------------------------------|
| (C) Hall Coefficient | ( <b>D</b> ) Diffusion Constant |

#### b. The cascade amplifier is a multistage configuration of

| (A) CC-CB | <b>(B)</b> CE-CB |
|-----------|------------------|
| (C) CB-CC | <b>(D)</b> CE-CC |

### c. The ideal op-amp has the following characteristics

| (A) $Ri=\infty$ , $Ai=\infty$ , $Ro=0$     | ( <b>B</b> ) Ri=0, A= $\infty$ , Ro=0 |
|--------------------------------------------|---------------------------------------|
| (C) $Ri=\infty$ , $A=\infty$ , $Ro=\infty$ | ( <b>D</b> ) Ri=0, A=∞, Ro=∞          |

d. Ripple frequency of the output waveform of a bridge rectifier when fed with a 50Hz sine wave is

| ( <b>A</b> ) 100 Hz | ( <b>B</b> ) 25 Hz         |
|---------------------|----------------------------|
| ( <b>C</b> ) 50 Hz  | ( <b>D</b> ) None of these |

The sum S of A and B in a half adder can be implemented by using K NAND e. gates. The value of K is

| (A) 3 | <b>(B)</b> 4               |
|-------|----------------------------|
| (C) 5 | ( <b>D</b> ) None of these |

AC03/AT03 / OCTOBER - 2012

1

AMIETE - CS/IT (OLD SCHEME)

#### Subject: BASIC ELECTRONICS & DIGITA Code: AC03/AT03

- The reason for using Gray Code in K-map is f.
  - (A) gray code is efficient than binary code
- StudentBounty.com (B) gray code provides cell values that differ in only one bit in adjacent cell

ROLL NO.

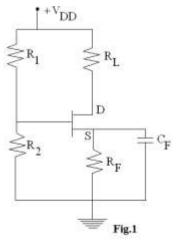
- (C) no other code is available
- (D) Any other code can be used.
- g. The effective channel length of a MOSFET in Saturation decreases with increase in

| (A) Gate Voltage   | ( <b>B</b> ) Drain Voltage |
|--------------------|----------------------------|
| (C) Source Voltage | ( <b>D</b> ) Base Voltage  |

h. Extremely low power dissipation and low cost per gate can be achieved in the following IC

| (A) ECL | (B) CMOS |
|---------|----------|
| (C) TTL | (D) MOS  |

In which flipflop the output is transparent to input? i.


| (A) JK FF | ( <b>B</b> ) T FF |
|-----------|-------------------|
| (C) SR FF | ( <b>D</b> ) D FF |

- Which one of the following statement about RAM is not correct? j.
  - (A) RAM Stands for random access memory
  - (B) It is also called read/write memory
  - (C) When power supply is switched off, the information in RAM is usually lost
  - (D) The binary contents are entered or stored in the RAM chip during the Manufacturing

### Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- Q.2 a. Explain the input and output characteristics of C B configuration. (8)
  - b. A JFET amplifier with stabilized biasing circuit shown in Fig.1 has following parameters: (8)

 $V_{\rm P} = -2V, \ I_{\rm DSS} = 5mA, \ R_{\rm T} = 910\Omega,$  $R_{F} = 2.29 k\Omega, R_{1} = 12 M\Omega, R_{2} = 8.75 M\Omega$ and  $V_{DD} = 24$ V. Determine the value of drain current  $I_{\rm D}$  at the operating point. Also verify that FET will operate in pinch-off region.

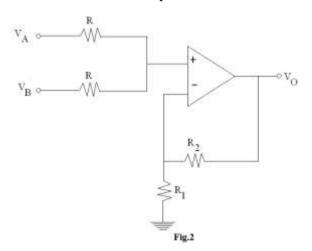


AC03/AT03 / OCTOBER - 2012

2

AMIETE - CS/IT (OLD SCHEME)

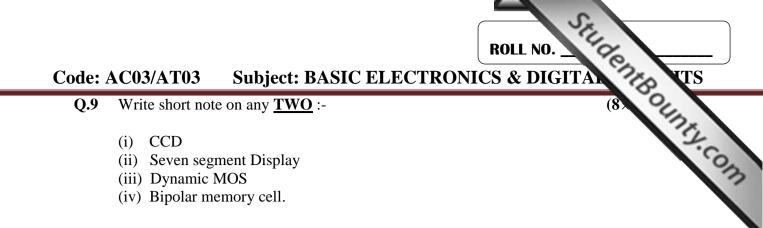
#### Code: AC03/AT03 Subject: BASIC ELECTRONICS & DIGITA


- StudentBoul a. Derive the general expression for Input impedance, Current gain, Volta **Q.3** and output impedance in terms of h parameter and the load resistance.
  - For a BJT  $h_{ie} = 500\Omega$ ,  $h_{fe} = 100$ ,  $h_{re} = 10^{-4}$ ,  $h_{oe} = 4 \times 10^{-5} \text{ A/V}$ , b.  $V_{CE} = 10V$ ,  $I_{C} = 100$ mA and room temperature of  $27^{\circ}C$ . The BJT has  $f_T=50MHz$  and  $C_{b^\prime c}=3pF.$  Calculate all the parameters of the hybrid  $\pi$ model of the BJT. (8)

ROLL NO.

UTS

ry.com


- **Q.4** a. Explain how LC tank circuit is used to generate AC oscillations in an electronic oscillator? (8)
  - b. Find an expression for the output  $V_0$  of the amplifier shown in Fig 2. Assume op-amp is ideal. What mathematical operation does this circuit perform? (8)



- **Q.5** a. Explain the working of a full wave bridge rectifier. Explain what is a ripple factor? (8)
  - b. Explain 'Junction diode switching time' to justify diode reverse recovery time. Storage time and transition time. (8)

| Q.6 | a. | (i) Write minterms of $A + \overline{B} \overline{C}$<br>(ii) Write maxterms of (A+B) (B+C) | (4+4) |
|-----|----|---------------------------------------------------------------------------------------------|-------|
|     | b. | Explain the operation of a decimal to BCD encoder.                                          | (8)   |
| Q.7 | a. | Explain the operation of J-K flip-flop.                                                     | (8)   |
|     | b. | Draw the circuit of a 3 bit synchronous counter and explain its working.                    | (8)   |
| Q.8 | a. | Explain the working of CMOS NAND gate and NOR gate                                          | (8)   |
|     | b. | Draw a TTL circuit with totem pole output and explain its working                           | (8)   |

AC03/AT03 / OCTOBER - 2012 AMIETE - CS/IT (OLD SCHEME) 3



4

AMIETE - CS/IT (OLD SCHEME)