Time: 3 Hours

JUNE 2012

please write your roll no. at the space provided on each page IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. Which of the following is an ideal voltage source?
(A) Voltage independent of current
(B) Current independent of voltage
(C) Both (A) and (B)
(D) None of the above
b. The voltage due to self inductance and mutual inductance in the coil as shown in Fig. 1.
(A) $\mathrm{V}_{1}=\mathrm{L}_{1} \frac{\mathrm{di}_{1}}{\mathrm{dt}}-\frac{\mathrm{Mdi}_{2}}{\mathrm{dt}}$
(B) $\mathrm{V}_{1}=\mathrm{L}_{2} \frac{\mathrm{di}_{1}}{\mathrm{dt}}+\frac{\mathrm{M}_{1} \mathrm{di}_{2}}{\mathrm{dt}}$
(C) $\mathrm{V}_{1}=\mathrm{L}_{1} \frac{\mathrm{di}_{1}}{\mathrm{dt}}+\frac{\mathrm{Mdi}_{2}}{\mathrm{dt}}$
(D) $\mathrm{V}_{1}=\mathrm{L}_{2} \frac{\mathrm{di}_{1}}{\mathrm{dt}}+\frac{\mathrm{Mdi}}{\mathrm{dt}}$

Fig. 1
c. The Laplace transform $\mathrm{F}(\mathrm{s})$ of a time function $\mathrm{f}(\mathrm{t})$ is defined as
(A) $\mathcal{L}[\mathrm{f}(\mathrm{t})]=\mathrm{F}(\mathrm{s})=\int_{0}^{\infty} \mathrm{f}(\mathrm{t}) \cdot \mathrm{e}^{-\mathrm{st}} \mathrm{dt}$
(B) $F(s)=\int_{\infty}^{0} f(t) \cdot e^{-s t} d t$
(C) $F(s)=\int_{-\infty}^{\infty} f(t) \cdot e^{-s t} d t$
(D) $F(\mathrm{~s})=\int_{0}^{1} \mathrm{f}(\mathrm{t}) \cdot \mathrm{e}^{-\mathrm{st}} \mathrm{dt}$
d. The laplace transform of $\sin \omega_{0} t$ is
(A) $\frac{\mathrm{s}^{2}}{\omega_{0}^{2}+\mathrm{s}^{2}}$
(B) $\frac{\mathrm{s}}{\omega_{0}^{2}+\mathrm{s}^{2}}$
(C) $\frac{\omega_{0}}{\mathrm{~s}^{2}+\omega_{0}^{2}}$
(D) $\frac{1}{\mathrm{~s}^{2}+\omega_{0}^{2}}$
e. The current response of a series resonant RLC circuit is
(A)

(B)

(C)

(D)

f. Thevenin's equivalent circuit of a linear active network is
(A)

(B)

(C)

(D)

g. The characteristics impedance of a T network is
(A) $\mathrm{Z}_{\mathrm{OT}}=\sqrt{\frac{\mathrm{Z}_{1}}{\mathrm{Z}_{1}+4 \mathrm{Z}_{2}}}$
(B) $\mathrm{Z}_{\mathrm{OT}}=\sqrt{\frac{\mathrm{Z}_{2}}{\frac{\mathrm{Z}_{1}}{4}+\mathrm{Z}_{2}}}$
(C) $\mathrm{Z}_{\mathrm{OT}}=\sqrt{\mathrm{Z}_{1} \mathrm{Z}_{2}\left(1+\frac{\mathrm{Z}_{1}}{4 \mathrm{Z}_{2}}\right)}$
(D) $\mathrm{Z}_{\mathrm{OT}}=\sqrt{\left(1+\frac{\mathrm{Z}_{1}}{4 \mathrm{Z}_{2}}\right) \mathrm{Z}_{2}}$
h. The reflection coefficient K is
(A) $|\mathrm{K}|=\frac{\left|\mathrm{V}_{\text {max }}\right|-\left|\mathrm{V}_{\text {min }}\right|}{\left|\mathrm{V}_{\text {max }}\right|+\left|\mathrm{V}_{\text {min }}\right|}$
(B) $|\mathrm{K}|=\frac{\left|\mathrm{V}_{\text {max }}\right|+\left|\mathrm{V}_{\text {min }}\right|}{\left|\mathrm{V}_{\text {max }}\right|-\left|\mathrm{V}_{\text {min }}\right|}$
(C) $|K|=\frac{\left|V_{\max }\right|}{\left|V_{\min }\right|}$
(D) $|\mathrm{K}|=\frac{\left|\mathrm{V}_{\min }\right|}{\left|\mathrm{V}_{\max }\right|}$

Code: DE57

i. SWR (Standing Wave Ratio) is
(A) $\mathrm{S}=1+|\mathrm{K}|$
(B) $\mathrm{S}=1-|\mathrm{K}|$
(C) $\mathrm{S}=\frac{1+|\mathrm{K}|}{1-|\mathrm{K}|}$
(D) $\mathrm{S}=\frac{1-|\mathrm{K}|}{1+|\mathrm{K}|}$
j. Smith chart can be used to
(A) plot an impedance
(B) determine VSWR (Voltage Standing Wave Ratio)
(C) None of the above
(D) Both (A) and (B)

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q. 2 a. Find the laplace transform of the following functions:
(i) $f(t)=t^{2}$
(ii) ramp function $\{\mathrm{f}(\mathrm{t})=\mathrm{t}\}$
(iii) $f(t)=\sin \omega t$
(iv) $\mathrm{f}(\mathrm{t})=\mathrm{t}^{\mathrm{n}}$
b. Find the laplace transform of given functions:
(i) $f(t)$

(ii) half cycle of sine wave

Q. 3 a. Verify the reciprocity theorem for the network as shown in Fig. 2

Fig. 2

Fig. 3
b. Draw the dual for the given network in Fig. 3.
(Mark nodes in each of the loop and a reference node outside circuit)
Q. 4 a. Draw the expressions for resonant frequency, selectivity, bandwidth and Q factor for a series resonant RLC circuit.
b. An induction of 0.5 H , a resistance of 5Ω and a capacitance of $8 \mu \mathrm{~F}$ are in series across a 220 V ac supply. Calculate the frequency at which the circuit resonates. Find the current at resonance, bandwidth half power frequencies and the voltage across the capacitance at resonance.
Q. 5 a. Draw the relation between
(i) y and z parameter
(ii) Transmission line parameters and z parameters.
b. Two identical sections of T networks are connected in cascade. Obtain the circuit parameters of the resulting circuit (Fig. 4).
(4+4)

Fig. 4
Q. 6 a. Derive the expression for Z_{0} and γ of a line composed of cascaded T sections.
(8)
b. The primary line constants of a transmission line $/ \mathrm{km}: \mathrm{R}=6 \Omega, \mathrm{~L}=2.2 \mathrm{mH}$, $\mathrm{C}=0.005 \mu \mathrm{~F}, \mathrm{G}=0.25 \mu^{3}$, $\mathrm{f}=800 \mathrm{~Hz}$. Calculate
(i) attenuation suffered by the signal after travelling a distance of 50 km at the given frequency
(ii) velocity by which the signal travels through the line.
Q. 7 a. A 50 MHz open wire line is to be built of copper wire [$\varepsilon_{\mathrm{r}}=1$] of diameter $3.264 \mathrm{~mm}, \mathrm{R}_{0}=425 \Omega$. Find
(i) the desired spacing ' d '
(ii) calculate the total L \& C of 5 m of this line if the line is dissipationless.
b. Explain how a transmission line can be used as
(i) impedance transformer
(ii) impedance inverter
(iii) coupling to an antenna
(iv) input impedance of this line.
Q. 8 a. What is inductance? Derive relation for energy stored in inductor.

b. Find emf equation for three mutually coupled inductors as Fig. 5.
Q. 9 a. Derive the expressions for the for the elements of m-derived
(i) T filter
(ii) π-filter.
(4+4)
b. Design a prototype band pass filter with cut-off frequencies 1.5 kHz and 5 kHz design impedance of 500Ω.

