Diplete - ET/CS (NEW SCHEME)

Time: 3 Hours

JUNE 2012

ROLL NO.

*ATHEMA

THEMA

THEM PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Ouestion 1 is compulsory and carries 20 marks. Answer to O.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the O.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

 (2×10)

- a. The value of $\lim_{x \to 1} (x)^{\frac{1}{x-1}}$ is
 - (**A**) e

(B) 2e

 $(\mathbf{C}) e^2$

- **(D)** e^3
- b. The value of $\int_{0}^{\pi/2} \sin^7 x \, dx$ is
 - (A) 4/5

(B) 35/16

(C) 16/35

- **(D)** 5/4
- c. Amplitude of $\frac{(3-\sqrt{2} i)^2}{1+2i}$ is
 - (A) $\tan^{-1} \left(\frac{6\sqrt{2} 4}{12\sqrt{2} 7} \right)$
- **(B)** $\tan^{-1} \left(\frac{6\sqrt{2} + 14}{12\sqrt{2} 7} \right)$
- (C) $\tan^{-1} \left(\frac{6\sqrt{2} + 4}{12\sqrt{2} + 7} \right)$
- **(D)** $\tan^{-1} \left(\frac{4\sqrt{2} + 7}{5\sqrt{2} 4} \right)$
- d. If the co-ordinates of P be (3, 4, 12) then the magnitude of \overrightarrow{OP} (O is origin) is
 - (A) 15

(B) 17

(C) 11

- **(D)** 13
- e. The projection of the vector $\hat{\mathbf{i}} 2\hat{\mathbf{j}} + \hat{\mathbf{k}}$ on $4\hat{\mathbf{i}} 4\hat{\mathbf{j}} + 7\hat{\mathbf{k}}$ is
 - **(A)** $\frac{9}{19}$

(B) $\frac{19}{9}$

(C) $\frac{11}{9}$

(D) $\frac{9}{11}$

Code: DE55 / DC55

ROLL NO. THEMA CALLADOLLARIA COM Subject: ENGINEERING MATHEMA

f. What is the order and degree of the equation $\frac{d^2y}{dx^2} + a^2x = 0$?

- (A) Order 2, Degree 2
- (B) Order 2, Degree 1
- (C) Order 2, Degree 0
- (**D**) Order 1, Degree 2

g. If $f(x) = x \sin x$, $(-\pi, \pi)$ then the value of b_n is

 $(A) - \pi$

(**B**) 0

(C) π

(D) 2π

h. value of $L\{\cos^2 2t\}$ is

(A)
$$\frac{1}{2} \left(\frac{1}{s} + \frac{s}{s^2 + 16} \right)$$

(B)
$$\left(\frac{1}{s} + \frac{s}{s^2 + 16}\right)$$

(C)
$$\left(\frac{1}{s} - \frac{s}{s^2 + 16}\right)$$

(D)
$$\frac{1}{2} \left(\frac{1}{s} - \frac{s}{s^2 + 16} \right)$$

i. value of $L\{e^{2t}\cos^2t\}$ is

(A)
$$\frac{1}{2} \left\{ \frac{1}{s+2} - \frac{s-2}{(s-2)^2 + 4} \right\}$$

(A)
$$\frac{1}{2} \left\{ \frac{1}{s+2} - \frac{s-2}{(s-2)^2 + 4} \right\}$$
 (B) $\frac{1}{2} \left\{ \frac{1}{s-2} + \frac{s-2}{(s-2)^2 + 4} \right\}$

(C)
$$\frac{1}{2} \left\{ \frac{1}{s-2} - \frac{s-2}{(s-2)^2 + 4} \right\}$$

j. Inverse Laplace transform of $\left\{ \frac{s^2 - 3s + 4}{s^3} \right\}$ is

(A) $1+3t+2t^2$ **(C)** $1+3t-2t^2$

(B) $1-3t-2t^2$ **(D)** $1-3t+2t^2$

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

a. Evaluate $\lim_{x \to \infty} \left(\frac{1}{x}\right)^{2 \sin x}$ **Q.2 (8)**

b. Expand $\log (1+e^x)$ in ascending powers of x as far as the term containing x^4 , using Maclaurin's theorem. **(8)**

a. If $I_n = \int_0^{\pi/2} x^n \sin x \, dx$, n > 1, show that $I_n + n(n-1)I_{n-2} = n(\pi/2)^{n-1}$ **(8)**

Code: DE55 / DC55

Subject: ENGINEERING MATHEMA

- b. The area enclosed by the hypocycloid $x^{2/3}+y^{2/3}=a^{2/3}$ is revolved about x-axi Find the volume of the solid generated.
- ROLL NO.

 "IT X-axis
 (8) a. If Z_1 , Z_2 be two complex numbers, show that **Q.4** $|Z_1 + Z_2|^2 + |Z_1 - Z_2|^2 = 2(|Z_1|^2 + |Z_2|^2)$ **(8)**

b. If
$$2\cos\theta = x + \frac{1}{x}$$
, prove that $2\cos r\theta = x^r + \frac{1}{x^r}$ (8)

- a. If a, b, c are the position vectors of the vertices A,B,C of a triangle. Show 0.5 that the vector area of the triangle is $\frac{1}{2}(b \times c + c \times a + a \times b)$ **(8)**
 - b. Find the volume of parallelopiped if $\vec{a} = -3\hat{i} + 7\hat{j} + 5\hat{k}, \vec{b} = -3\hat{i} + 7\hat{j} 3\hat{k}$ and $\overrightarrow{c} = 7\hat{i} - 5\hat{j} - 3\hat{k}$ are the three co-terminous edges of the parallelopiped. **(8)**
- a. Solve $(D^2-5D+6)y=e^x\cos 2x$ 0.6 **(8)**

b. Solve
$$\frac{d^2y}{dx^2} + 9y = \sec 3x$$
 (8)

- a. Find a Fourier series to represent x^2 in the interval (-l, l). **Q.7 (8)**
 - b. Expand $f(x) = \frac{1}{4} x$, if $0 < x < \frac{1}{2}$ $= x - \frac{3}{4}$, if $\frac{1}{2} < x < 1$ as the Fourier series of sine terms. **(8)**
- a. Find the Laplace transform of sin 2t cos 3t **Q.8 (8)**
 - b. Find Laplace transform of $\frac{\cos at \cos bt}{t}$ **(8)**
- **Q.9** a. Evaluate $L^{-1} \left\{ \frac{s^2}{(s^2 + a^2)^2} \right\}$ **(8)**
 - b. Apply convolution theorem to solve $L^{-1}\left\{\frac{1}{(s^2+1)(s^2+9)}\right\}$ **(8)**