Code: AE77/AC77

Subject: DIGITAL SIGNAL PROCE

ROLL NO.

AMIETE – ET/CS (NEW SCHEME)

Time: 3 Hours

JUNE 2012

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

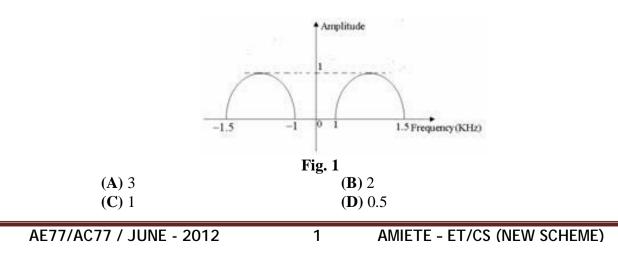
 (2×10)

a. In the Fourier transform of a real signal, the magnitude function is

(A) symmetric	(B) anti-symmetric
(C) recursive	(D) scaling

b. The estimate of power density spectrum is known as

(A) Auto correlation	(B) Randomo graph
(C) spectrogram	(D) periodogram


c. In radix 2-FFT algorithm, the value of N is

(A) 2 m	(B) 2^{m}
$(\mathbf{C}) (2)^{1/m}$	(D) 2/ m

d. In sampling of x (w), the value of sample at w = 0 is same as value of sample at w equal to

(A) π /2	(B) 2π
(C) π	(D) $2\pi/3$

e. An analog signal has the spectrum shown in Fig.1. The minimum sampling rate in kHz needed to completely represent this signal is

Code: AE77/AC77	Subject: D	IGITAL SIGNAL PRO	CL 17th
			QUE
f. The number of cor	nputations required in	DIT is as tha	t of DIF.
(A) different(C) same	(B (D	IGITAL SIGNAL PRO	.On
g. The ideal filter is a	lways		
(A) causal(C) inverse) non-causal) transpose]
h. In Kaiser Window , respective	_	is but the width of r	nain-lobe is
(A) variable, varia(C) fixed, fixed) fixed, variable) variable, fixed	
i. The two types of e	rror produced by A/D	conversion are	
(A) quantization and(C) quantization, s	U I) rounding, saturation) rounding, adaptive	
j. The DFT of finite	length sequence x(n)	$=\delta(n)$ is	
(A) 0 (C) z^{-1}	(B (D) 1) W _N	

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. Explain the reconstruction of a band-limited signal from its samples. (8) b. The continuous-time signal $x_c(t) = cos(4000\pi t)$ is sampled with a sampling period of T to obtain a discrete time signal $x(n) = cos(\pi n/3)$ (i) Determine a choice of T consistent with this information. (ii) Is the choice for T in part (i) unique? If, not specify another choice of T consistent with information given. (8) a. Discuss the phase distortion and group delay with respect to LTI system's 0.3 response. (8) b. Consider a causal system whose input and output satisfy the difference equation y(n)-a y(n-1) = x(n). (i) Find H(z), ROC and condition(s) for stability. (ii) Plot detailed pole-zero diagram. (iii) Find impulse response. (iv) Given system is IIR or FIR. State the reason. (8) a. Consider a LTI system with system function **0.4** $Z(s) = (1+2z^{-1} + z^{-2}) / (1 - 0.75 z^{-1} + 0.125 z^{-2})$. Obtain the cascade structure. Comments on the result obtained. (8)

AE77/AC77 / JUNE - 2012

2

		ROLL NO.	so (8) (6) for the
(Cod	e: AE77/AC77 Subject: DIGITAL SIGNAL PROCE	710
	b.	With the help of signal flow graph, discuss the structure of Linear-Phasesystem.	(8) CHINE
Q.5	a.	Discuss the utility of the Parks –McClellan algorithm.	(6)
	b.	$\begin{array}{l} 0.9 \leq \ H \ (e^{jw}) \leq 1, 0 \leq w \leq 0.2 \ \pi \\ \ H \ (e^{jw}) \leq 0.18, 0.3 \ \pi \leq w \leq \pi. \end{array}$	for the (10)
Q.6	a.	State and prove the following properties of DFT.(i) Linearity(ii) Duality(iii) Symmetry(iv) circular shift of a sequence.	(8)
	b.	For a delayed impulse sequence $x_1(n) = \delta(n-1)$ and $x_2(n) = \{ \underline{5}, 4, 3, 2 $ given. Obtain circular convolution using (i) Graphical Method and (ii) Using DET and IDET method	,1,0}is (8)
		(ii) Using DFT and IDFT method.	(8)
Q.7	a.	Explain Goertzel Algorithm and its application.	(8)
	b.	Develop Decimation in Time algorithm for N=4 and draw signal flow grap	ph. (8)
Q.8	a.	Explain properties of periodogram.	(8)
	b.	Write short note on Block convolution using the time dependent I transform.	Fourier (8)
Q.9	a.	Using Hilbert Transform, find relationship between magnitude and phase.	(8)
	1		(iw)

b. For a real, causal sequence x(n) for which the real part of the DTFT, is $X_R(e^{jw}) = (1-\alpha \cos w) / (1-2\alpha \cos w + \alpha^2)$ with $|\alpha| < 1$. Determine the original sequence $x(n), X(e^{jw})$ and X(z). (8)

3