Code: AE74

Subject: VLSI DESIGN

ROLL NO.

AMIETE - ET (NEW SCHEME)

Time: 3 Hours

JUNE 2012

Max. Marks: 1

studentBounty.com PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

 (2×10)

a. Channel exists between source and drain without gate voltage is

(A) Enhancement type MOS	(B) Depletion type MOS
(C) BiCMOS	(D) CMOS

b. Limitation of MOS Technology is

(A) High power dissipation	(B) Compactness
(C) Load driving capability	(D) High Noise margin.

c. Electron Transit time T_{sd} is inversely proportional to

(A) V_{gs}	(B) V _{ds}
(C) L	(D) E _{ds}

d. The constant term K in I_{ds} expression is determined by

(A) $\frac{\epsilon_{\text{ins}} \epsilon_0 \text{ WL}}{\text{D}}$	$(\mathbf{B}) \; \frac{\in_{\mathrm{ins}} \in_0}{\mathrm{D}}$
$(\mathbf{C}) \in_{\text{ins}} \in_0 \frac{\mathbf{W}}{\mathbf{L}}$	$(\mathbf{D}) \ \frac{\epsilon_{\text{ins}} \epsilon_0}{D} \mu$

e. Figure of merit ω_0 is directly proportional to

(A) Width of channel	(B) Length of channel
(C) Mobility of electron/hole	(D) Electron Transit term

			ROLL NO.	
	С	ode: AE74	Subject: VLSI DESIGN	ne
	f.	Pull-up to pull-down ratio for an inverter is	nMOS inverter driven by another	CUMPE
		(A) 6:1	(B) 8:1	.8.
		(C) 16:1	(D) 4:1	3
	g.	Latch-up in CMOS can be reduced	by	
		(A) Increasing substrate doping leve	(B) Decreasing substrate doping level	
		(C) Increasing the value of R_s	(D) Increasing the value of R_p	
	h.	Minimum spacing between two diffe	usion layer is	
		(A) 1λ	(B) 2λ	
		(C) 3λ	(D) 4λ	
	i.	nMOS inverter with 4:1 Z_{pu} / Z_{pd}	ratio has V_{DD} to G_{ND} ON resistance	
		(A) 10K	(\mathbf{R}) $A0K$	
		(C) 50K	(D) 90K	
	j.	Total delay of cascaded CMOS inve	rter for N even is	
		(A) 3.5 Ne	(B) 2.5 Ne	
		(C) 5 Ne	(D) 7 Ne	
		Answer any FIVE Questions Each question ca	s out of EIGHT Questions. rries 16 marks.	
Q.2	a.	With neat diagram explain Three mode Transistor	modes of operation of nMOS enhance	ement (8)
	b.	With neat sketch explain the CMOS	S N-well Fabrication process.	(8)

- Q.3 a. Derive an expression for Pull-up to Pull-down ratio for an n-MOS inverter driven by another n-MOS inverter. (8)
 - b. Draw CMOS inverter circuit. Also compare CMOS & Bipolar transistor parameter. (8)
- Q.4 a. Write circuit and Stick diagram for (i) 2 I\P CMOS NOR gate (ii) 2 I\P EXOR gate using CMOS
 - b. Briefly explain λ based design rules for
 (i) Transistor
 (ii) Wire

AE74 / JUNE - 2012

AMIETE - ET (NEW SCHEME)

(8)

		ROLL NO.	
	С	ode: AE74 Subject: VLSI DESIGN	THE
Q.5	a.	Define sheet resistance and standard unit of capacitance	(4) (11)
	b.	Calculate R_{on} and C_g of a n-MOS inverter interms of R_s and C_g respect	ively.
		Assume $\frac{Z_{pu}}{Z_{pd}} = 4:1$.	(4)
	c.	Write a short note on driving large capacitive loads.	(8)
Q.6	a.	Obtain Scaling factor for(i) Gate capacitance(ii) Frequency(iii) Power dissipation(iv) Current diversity	(10)
	b.	Design 4:1 MUX using Transmission gate.	(6)
Q.7	a.	Design 4×4 crossbar switch using MOS switch.	(8)
	b.	Implement adder element logic circuit using n-Switch based Multiplexer.	(8)
Q.8	a.	Draw the structure of Six- transistor static CMOS memory-cell and expl Read and Write operations.	ain it's (10)
	b.	Discuss about Ground rules for successful design of VLSI chip.	(6)
Q.9	a.	Explain briefly various design styles used in VLSI design.	(6)
	b.	Define Controllability and observability.	(4)
	c.	Write Sequential logic circuit containing scan path for testing and exp operation briefly.	lain its (6)

(

(6)

3