Code: AE73

Subject: INFORMATION THEORY &

AMIETE - ET (NEW SCHEME)

Time: 3 Hours

JUNE 2012

ROL

StudentBounty.com PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE OUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the 0.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

0.1 Choose the correct or the best alternative in the following:

 (2×10)

a. A town has two fire engines operating independently. The probability that a specific fire engine is available when needed is 0.99. The probability that neither is available when needed is

(A) 1	(B) 0
(C) 0.0001	(D) 0.1

b. Let x be a random variable that denotes the life in hours of a certain electronic

The PDF is given by
$$f(x) = \frac{20,000}{x^3}$$
 for x > 100

=0 elsewhere The expected life of their device is

(A) 200 Hrs	(B) 100 Hrs
(C) 400 Hrs	(D) zero

c. The average number of radioactive particles passing through a counter during 1m sec in a lab experiment is 4. The probability that 6 particles enter the counter in 1m sec is

(A) 0.284	(B) 0.1042
(C) 0.2401	(D) 0.44802

d. A discrete source emits one of six symbols once every m sec. The symbols probabilities are $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32} \& 1/32$ respectively. The source entropy is

(A) 1	(B) 0
(C) 1.9375	(D) 5.7391 bits/ msg symbol

e. A source produces two symbols A & B with probabilities 0.05 & 0.95 respectively. The average length of the message is

(A) 0.05	(B) 0.95
(C) 0	(D) 1 bits/msg symbol

AE73 / JUNE - 2012

AMIETE - ET (NEW SCHEME)

1

		ROL
Code: AE7		DRMATION THEORY &
f. A sour respect	rces produces two independe tively. The source has an effic	ent symbols with probabilities 0.4
(A) 97. (C) 0	.095	ROL DRMATION THEORY & ent symbols with probabilities 0.4 iency of (B) 95.097 (D) 1 distribution as
g. A cont	inuous random variable has a $f_x(x) = \frac{1}{a}$ $0 \le x \le a$ = 0 otherwise	distribution as
The dif	fferential entropy is	
(A) log (C) 0	g _a 2	 (B) log₂ a (D)1 bit / sample
	e grade channel of a telephone ty of the telephone channel for	e network has a bandwidth of 3.4 kHz. The a S/N ratio of 30 dB is
(A) 33(C) 99		 (B) 88339 (D) 0 bits/ sec
i. For a s	systematic (6,3) linear block co	ode, the number of valid code words is

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. State and prove Baye's Theorem

correcting efficiency of this code is

(A) 2

(C) 6

(A) 60

(C) 100

b. Three machines A, B & C produce respectively 50%, 30% and 20% of the total number of items in a factory. The percentage of defective outputs of these machines are 3%, 4% & 5% respectively.

(B) 3

(D) 8

(B) 75

(D) 0

j. A (15,9) cyclic code has a burst error correcting ability of 3. The % burst error

- (i) If an item is selected at random what is the probability of that the item is defective
- (ii) If the item selected at random is found to be defective what is the probability that the item was produced by machine A, by machine B or machine C? (10)

2

(6)

C	ode	ROL : AE73 Subject: INFORMATION THEORY	a le
Q.3	a.	Define "ENTROPY" of an information source. Derive an exp average information content of symbols in long independent seque	pression ences.
	b.	A fair coin is tossed repeatedly. Let $A = \{ \text{Event of getting 3 heads out of 5 trials} \\ B = \{ \text{Event of getting 5 heads out of 8 trials} \\ \text{Which event conveys more information? Support your answer 1 computation of respective amounts of information.} \end{cases}$	8 bression ences. (8) by numerical
Q.4	a.	State & prove KRAFT inequality	(8)
	b.	Consider a binary block code with 2 ⁿ code words of same length the KRAFT in equality is satisfied for such a code	n, n show that (8)
Q.5	a.	With relevant equations explain the Shannon's noise less coding t	heorem. (8)
	b.	 Consider a discrete memory less source whose alphabet consider a discrete memory less source whose alphabet considered alphabet symbols (i) Explain why the use of a fixed length code for the represent source is as efficient as any code can be. (ii) What conditions have to be satisfied by K and the code length coding efficiency to be 100%. 	(8) tation of such
Q.6	a.	Define the following (i) Priori Entropy (iii) Equivocation (v) Joint Entropy(ii) Posterior Entropy (iv) Mutual information	(10)
	b.	With usual notations, prove the following: $H(x,y)=H(x/y)+H(y)$	(6)
Q.7	a.	Explain the importance of a channel in a communication system we comparison between continuous & discrete channels.	vith a (6)
	 b. An analog signal has a 4 kHz bandwidth. The signal is sampled at 2.5 times the Nyquist rate & each sample is quantized into 256 equally likely levels. Assume that the successive samples are statistically independent. (10) (i) Find the information rate of this source (ii) Can the output of this source be transmitted without errors over a gaussian channel of bandwidth 50 kHz and S/N ratios of 20 dB. (iii) If the output of this source is to be transmitted without error over an analog channel having S/N =10 dB, compute the bandwidth requirement of the channel. 		
Q.8	a.	Construct groups under mod5 addition & multiplication.	(4)
	b.	Construct the table for GF (2 ³) based on the primitive polynomial $P(x) = 1 + x + x^3$	(4)

3

Code: AE73

c. Consider a (8,4) LBC with the generator matrix

[1100 1000⁻ 1101 0100 G = 0111 0010 1001 0001

- (i) Obtain 'H' matrix & all possible code words
- (ii) Draw the encoder & syndrome calculation circuits
- Consider the (2,1,5) non-systematic feed forward convolution encoder with $g^{(1)} = (101101), g^{(2)} = (110011)$ Q.9
 - (i) Draw the encoder circuit
 - (ii) Find the generator matrix
 - (iii) Find the output sequences $v^{(1)}$, $v^{(2)}$ & v corresponding to an input sequence x = (1101)
 - (iv) Draw the code tree & trace the code

(16)

4