Code: AE65

Time: 3 Hours

Subject: ANALOG COMMUN

ROLL NO.

AMIETE - ET (NEW SCHEME)

JUNE 2012

StudentBounty.com PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Ouestion 1 is compulsory and carries 20 marks. Answer to 0.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

0.1 Choose the correct or the best alternative in the following:

 (2×10)

a. In AM a message signal of 5 kHz is modulated by a carrier of 100 kHz, the Bandwidth of the modulated signal is

(A) 5 kHz	(B) 10 kHz
(C) 100 kHz	(D) 105 kHz

b. If the carrier of a 100 percent modulated AM wave is suppressed, the percentage power saving will be

(A) 50	(B) 150
(C) 83.33	(D) 66.66

c. In a communication system noise is likely to affect the signal

(A) at the receiver	(B) in the information source
(C) in the channel	(D) at the transmitter

d. An FM signal with a deviation δ is passed through a mixer, and it has frequency reduction fivefold. The deviation at the output of the mixer is

(A) δ	(B) 5 δ
(C) δ/5	(D) 25δ

e. A receiver has poor IF selectivity. It will therefore also have poor

(A) Blocking	(B) Double-spotting
(C) Sensitivity	(D) Diversity reception

f. If the transmission line is properly matched, then the VSWR is

(A) 0	(B) 1
(C) Less than 1.	(D) Greater than 1

AE65 / JUNE - 2012

AMIETE - ET (NEW SCHEME)

	D/ -	ROLL NO.
Code: A	£05	Subject: ANALOG COMMUN
g.	To couple a coaxial line to a para	llel-wire line, it is best to use a
	(A) Slotted line(C) Directional coupler	(B) Balun(D) Quarter-wave transformer
h.	High frequency waves are	
	(A) Absorbed by the F₂ layer(C) Affected by the solar cycle	(B) Reflected by the D layer(D) Capable of use for long distance communication
i.	Wave guide acts like a	
	(A) High pass filter(C) Band pass filter	(B) Low pass filter(D) Band stop filter
j.	Indicate which modulation system	n is digital
	(A) Pulse Code modulation.(C) Pulse Position modulation	(B) Pulse Amplitude modulation.(D) Pulse Width modulation

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

a.	Define modulation and explain its need in communication system.	(4)
b.	Write short note on basic communication system.	(4)
c.	Define noise figure and noise temperature and write the expression for same.	the (8)
a.	Explain with neat diagram AM and modulation index.	(6)
b.	With neat block diagram explain the working of low level AM transmitter	(6)
c.	An AM transmitter radiates 9 kW with the carrier unmodulated, and 10.1 when the carrier is sinusoidally modulated. Calculate the modulation in another sine wave corresponding to 40% modulation is transmitted simultant determine the total radiated power and effective modulation index.	25 kW idex. If ieously, (4)
a.	Obtain mathematical representation of FM & PM.	(6)
b.	Explain with neat block diagram the working of indirect method of generation.	FM (6)
c.	An FM wave is represented by $v = 12\sin(6 \times 10^8 t + 5\sin 1250 t)$. Find carrier and modulating frequencies, the modulation index and maxim deviation of FM wave. Is it narrow band or wideband FM? What power FM will dissipate in a 10 ohm resistor?	the num this (4)
	 a. b. c. a. b. c. b. c. 	 a. Define modulation and explain its need in communication system. b. Write short note on basic communication system. c. Define noise figure and noise temperature and write the expression for same. a. Explain with neat diagram AM and modulation index. b. With neat block diagram explain the working of low level AM transmitter c. An AM transmitter radiates 9 kW with the carrier unmodulated, and 10.1 when the carrier is sinusoidally modulated. Calculate the modulation in another sine wave corresponding to 40% modulation is transmitted simultar determine the total radiated power and effective modulation index. a. Obtain mathematical representation of FM & PM. b. Explain with neat block diagram the working of indirect method of generation. c. An FM wave is represented by v = 12 sin(6×10⁸ t + 5 sin 1250t).Find carrier and modulating frequencies, the modulation index and maxim deviation of FM wave. Is it narrow band or wideband FM? What power FM will dissipate in a 10 ohm resistor?

Code: AE65

ROLL NO.

- **0.5** a. Explain with neat circuit diagram the working of Balance slope FM detector.
- StudentBounty.com b. With the help of a neat diagram explain the working of superhetrodyne AM receivers. (8)
- Q.6 a. What are primary and secondary constants of a transmission lines? Write the expression for the secondary constants in terms of primary constants. (6)
 - b. Explain the different applications of smith chart. (4)
 - c. In a transmission line the load impedance is $Z_L = (450-j600) \Omega$ at 10 MHz, if the characteristic impedance is 300 Ω , find the position and length of the single stub for matching the load. (6)
- 0.7 a. Explain the working of a Magic tee. (6)
 - b. For a parallel-plane wave guide obtain the expressions for cutoff wavelength, group and phase velocity. (6)
 - c. A rectangular waveguide measures (3×4.5) cm internally, and has a 9 GHz signal propagated in it. Calculate the cut-off wavelength, the guide wavelength, the group and phase velocities and the characteristic wave impedance for (i) the $TE_{1,0}$ mode and (ii) the $TE_{1,1}$ mode. (4)
- **Q.8** a. Explain different types of Pulse modulation techniques. (8)
 - b. Calculate the capacity of a standard 4 kHz telephone channel with signal to noise ratio of 10 dB. (8)
- Q.9 a. Write short note on short and medium-Haul system. (8)
 - b. What is multiplexing? Explain FDM technique. (8)