AMIETE - ET (NEW SCHEME)

Time: 3 Hours

JUNE 2012

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. For an ideal lever shown in Fig.1, the displacement ratio $\left(\frac{x}{y}\right)$ and the force advantage $\left(\frac{F_{1}}{F_{2}}\right)$ are given by:
(A) $\frac{\mathrm{a}}{\mathrm{b}} ; \frac{\mathrm{b}}{\mathrm{a}}$
(B) $\frac{\mathrm{b}}{\mathrm{a}} ; \frac{\mathrm{a}}{\mathrm{b}}$
(C) $a b, \frac{a}{b}$
(D) $\frac{a}{b}, a b$

Fig. 1
b. For repetitive and/or hazardous tasks to be carried out at great speed and high precision, we use:
(A) control systems
(B) servomechanisms
(C) robotics
(D) mechanical system
c. If charge in electrical system is analogous to heat flow in thermal system, then current and voltage represent respectively:
(A) temperature and heat flow rate
(B) heat flow rate and temperature
(C) thermal resistance and thermal capacitance
(D) thermal capacitance and thermal resistance
d. The system sensitivity $\mathrm{S}_{\mathrm{K}}^{\mathrm{T}}$ to feedback gain K in $\mathrm{T}=\frac{\mathrm{A}}{1+\mathrm{KA}}, \mathrm{A}=10^{4}, \mathrm{~K}=0.1$, is given by:
(A) -0.01
(B) -0.1
(C) 1
(D) -1
e. In the signal-flow graph shown in Fig. 2 with an input disturbance torque $T_{D}(s)$ and $\left|G_{1}(s) G_{2}(s) H(s)\right| \gg 1$, the ratio $\left(\frac{C_{D}(s)}{T_{D}(s)}\right)$ is given by:
(A) $\frac{-\mathrm{G}_{2}(\mathrm{~s})}{\mathrm{G}_{1}(\mathrm{~s}) \mathrm{H}(\mathrm{s})}$
(B) $\frac{-1}{\mathrm{G}_{1}(\mathrm{~s}) \mathrm{H}(\mathrm{s})}$
(C) $\frac{\mathrm{G}_{1}(\mathrm{~s})+\mathrm{G}_{2}(\mathrm{~s})}{\mathrm{G}_{1}(\mathrm{~s}) \mathrm{G}_{2}(\mathrm{~s}) \mathrm{H}(\mathrm{s})}$
(D) $\frac{-\mathrm{G}_{1}(\mathrm{~s})+\mathrm{G}_{2}(\mathrm{~s})}{\mathrm{G}_{1}(\mathrm{~s}) \mathrm{G}_{2}(\mathrm{~s}) \mathrm{H}(\mathrm{s})} \mathrm{z}$

f. With reference to Fig.3, where $\zeta=\cos \phi$ is the damping factor
$0<\tan ^{-1}\left(\frac{\sqrt{1-\zeta^{2}}}{\zeta}\right)<\frac{\pi}{2}$ is applicable for:
(A) $\zeta<0$
(B) $\zeta \leq 1$
(C) $0<\zeta \leq 1$
(D) $0<\zeta<1$

Fig. 3
g. An incremental optical encoder used as a controller component having two channels and 30 sectors of disc (each sector being half transparent and half opaque) has improved basic resolution of:
(A) 3°
(B) 30°
(C) 300°
(D) 360°
h. If all the roots of the system $s^{3}+7 s^{2}+25 s+39=0$ are to have real parts more negative than -1 , then to check the relative stability, we should consider modified characteristic equation:
(A) $z^{3}-3 z^{2}-14 z+39=0$
(B) $z^{3}+4 z^{2}+14 z+20=0$
(C) $z^{3}+7 z^{2}+28 z+14=0$
(D) $z^{3}+4 z^{2}+11 z+13=0$
i. For the system $G(s)=\frac{9.7}{s(0.046 s+1)}$, at the corner frequency the value of $\angle \mathrm{G}(\mathrm{j} \omega)$ is :
(A) -135°
(B) -90°
(C) -45°
(D) 0°
j. If $r(t)$ is the input and $x_{1,2}$ are state-variables of the system $\left[\begin{array}{l}\dot{x}_{1} \\ \dot{x}_{2}\end{array}\right]=\left[\begin{array}{cc}0 & 1 \\ -100 & -20\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]+\left[\begin{array}{c}0 \\ 100\end{array}\right] r$, then its characteristic equation is:
(A) $\mathrm{s}^{2}+\mathrm{s}+100=0$
(B) $\mathrm{s}^{2}+\mathrm{s}+20=0$
(C) $\mathrm{s}^{2}-20 \mathrm{~s}-100=0$
(D) $\mathrm{s}^{2}+20 \mathrm{~s}+100=0$

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q. 2 a. Define the terms:(i) Coulomb friction force (ii) Viscous friction force
(iii) Stiction. Why is friction not always undesirable in physical systems? Explain the use of friction in the construction of the dashpot.
(3+2+3)
b. The block-diagram of a speed control system is shown in Fig.4. Define the state variables and write the state and output equations of the system in vectormatrix form.

Q. 3 a. Consider the blockdiagram of a control system shown in Fig.5. Determine the condition the feed forward compensation $\mathrm{G}_{\mathrm{C}}(\mathrm{s})$ should satisfy to cancel out the effect of disturbance input $\mathrm{U}(\mathrm{s})$ on the

Fig. 5 output C(s).
b. Draw s-domain signal-flow diagrams for the first-order systems:
(i) $\dot{x}=a x ; x(t=0)=x(0)$
(ii) $\dot{\mathrm{x}}=\mathrm{ax}+\mathrm{bu} ; \mathrm{x}(\mathrm{t}=0)=\mathrm{x}(0)$
(iii) $\dot{\mathrm{x}}=\mathrm{ax}+\mathrm{bu} ; \mathrm{x}(\mathrm{t}=0)=\mathrm{x}(0)=0 ; \mathrm{y}=\mathrm{cx}$

Where x is the state-variable, u is the input and y is the system output. Obtain the overall transfer function $\mathrm{T}(\mathrm{s})=\frac{\mathrm{Y}(\mathrm{s})}{\mathrm{U}(\mathrm{s})}$ for case (iii) above.
Q. 4 a. Determine the sensitivity $\mathrm{S}_{\alpha}^{\mathrm{T}}$ for the system shown in Fig.6. Evaluate S_{α}^{T} for $\omega=0.1$ and $1 \mathrm{rad} / \mathrm{s}$, with $\quad \alpha=2 \quad$ and $\mathrm{T}(\mathrm{s})=\frac{\mathrm{C}(\mathrm{s})}{\mathrm{R}(\mathrm{s})}$. Does the

Fig. 6 sensitivity increase with frequency?
b. Draw the torque characteristics vs pulses/second for a stepper motor, indicating maximum torque, slew range, and pull-out torque. Explain with the help of a diagram, how a stepper motor can be used in closed-loop mode.(4+4)
Q. 5 a. Show that the response $c(t)$ of a second-order system $\frac{C(s)}{R(s)}=\frac{K}{J s^{2}+F s+K}$ to unit step input $\mathrm{r}(\mathrm{t})=\mathrm{u}(\mathrm{t})$ has a steady-state part and a transient part. Find the value of C_{SS} for $\zeta<1$.
b. A unity negative feedback control system has an open-loop transfer function consisting of two poles at -0.1 and 1 , two zeros at -2 and -1 , and a variable gain K. Using Routh-stability criterion, determine the range of values of K for which the closed-loop system has 0,1 and 2 poles in the right-half s-plane. (8)
Q. 6 a. Consider the feedback system $G(s)=K \frac{(s+b)}{s(s+a)} ; H(s)=1 ; s=\sigma+j \omega$. Using the angle criterion for the root-locus prove that $(\sigma+b)^{2}+\omega^{2}=\left(b^{2}-a b\right)$. Hence, sketch the root-locus, taking $\mathrm{a}=1, \mathrm{~b}=2$.
b. Consider the open-loop transfer function $G(s) H(s)=\frac{K(s+z)}{s\left(s^{2}+2 s+2\right)}$. open-loop pole-zero cancellation, write the characteristic equation and sketch the root-locus.
Q. 7 a. At any point $G(j \omega)=x+j y$ on the polar plot of $G(j \omega)$, derive the equation of the constant-M circles, identifying the centre and radius. Draw typical family of M -circles with respect to $-1+\mathrm{j} 0$ point on the x -axis.
b. Obtain the sinusoidal transfer-function for the RC filter shown in Fig.7. Hence sketch the polar plot and the inverse polar plot for $0 \leq \omega \leq \infty$.
$(2+3+3)$

Fig. 7
Q. 8 a. Compare the advantages and applications of phase-lead and phase-lag compensators.
b. A cascade compensator $\mathrm{G}_{\mathrm{C}}(\mathrm{s})=\frac{\mathrm{s}+\alpha}{\mathrm{s}}$ is used with a unity negative feedback system $G(s)=\frac{K}{s+4}$. Find the values of K and α to achieve 20% peakovershoot and 1 s settling time. Using these values of K and α, write the transfer function of the prefilter to cancel out the closed-loop zero. Calculate the steady-state error to unit ramp input.
(5+1+2)
Q. 9 a. An intelligent wheelchair is designed to move from place to place avoiding obstacles as shown in Fig.8. Write the canonical state-variable form of the complete system. Draw its block-diagram in state-variable form.

b. For the electrical system shown in Fig.9, $\mathrm{x}_{1,2,3}$ are the state- variables and $y_{1,2}$ are output variables representing voltage across and current through R_{2}. Derive the state-model of the system.

