Code: AE57/AC57/AT57

Subject: SIGNALS AND SYS

ROLL NO.

 \sim

AMIETE - ET/CS/IT (NEW SCHEME)

Time: 3 Hours

JUNE 2012

StudentBounty.com PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the O.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Ouestions answer any FIVE Ouestions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
- Choose the correct or the best alternative in the following: 0.1

 (2×10)

a. Let $\delta(t)$ denote the delta function.	The value of the integral	$\int \delta(t) \cos\left(\frac{3t}{2}\right) dt$
is		$-\infty$

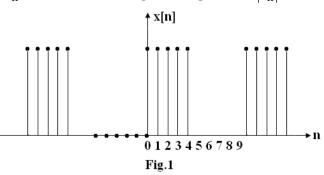
(A) 1	(B) -1
(C) 0	(D) $\frac{\pi}{2}$

b. A system with input x[n] and output y[n] is given as y[n] = $\left| \sin \frac{5}{6} \pi n \right| x[n]$

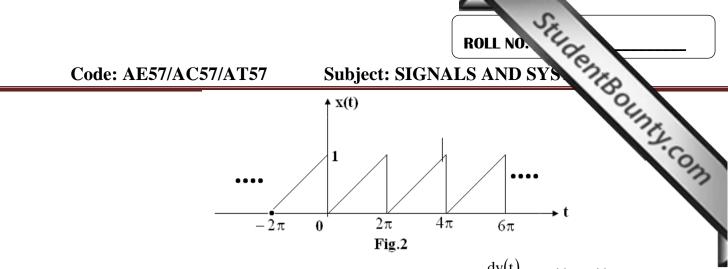
(B) non-linear, stable and non-invertible (A) linear, stable and invertible (C) linear, stable and non-invertible (D) linear, unstable and invertible

c. Convolution of x(t+5) with impulse function $\delta(t-7)$ is equal to:

(A) x(t-12)**(B)** x(t+12)(C) x(t-2)**(D)** x(t+2)


- d. If the impulse response of discrete time system is $h[n] = -5^n u[-n-1]$, then the system function H[z] is equal to
 - (A) $\frac{-z}{z-5}$ and ROC |Z| > 5(**B**) $\frac{z}{z-5}$ and ROC |Z| < 5(C) $\frac{-z}{z-5}$ and ROC |Z| < 5(**D**) $\frac{z}{z-5}$ and ROC |Z| > 5
- e. The fourier transform of a real valued time signal has (A) odd symmetry (**B**) even symmetry (C) conjugate symmetry (**D**) no symmetry
- f. The fourier series representation of an impulse train denoted by: $\delta(t - nT_{o})$ is given by

(A)
$$\frac{1}{T_o} \sum_{n=-\infty}^{\infty} \exp\left(-j\frac{2\pi nt}{T_o}\right)$$
 (B) $\frac{1}{T_o} \sum_{n=-\infty}^{\infty} \exp\left(-j\frac{\pi nt}{T_o}\right)$
(C) $\frac{1}{T_o} \sum_{n=-\infty}^{\infty} \exp\left(j\frac{\pi nt}{T_o}\right)$ (D) $\frac{1}{T_o} \sum_{n=-\infty}^{\infty} \exp\left(j\frac{2\pi nt}{T_o}\right)$


www.StudentBounty.com lomework Help & Pasfna

Code: AE57/AC57/AT57	Roll NO: Subject: SIGNALS AND SYS $(t) = e^{-at}u(t) \text{ for } a > 0 \text{ is}$ $(B) \frac{s}{s+a}$ $(D) \frac{a}{s+a}$
g. Laplace transform of signal x	$(t) = e^{-at}u(t)$ for $a > 0$ is
(A) $\frac{1}{s+a}$	$(\mathbf{B}) \frac{\mathbf{s}}{\mathbf{s} + \mathbf{a}}$
$(\mathbf{C}) \ \frac{\mathbf{s}}{(\mathbf{s}+\mathbf{a})^2}$	$(\mathbf{D}) \frac{\mathbf{a}}{\mathbf{s} + \mathbf{a}}$
h. $x[n] = a^{ n }, a < 1$, the discrete ti	me fourier transform is given by
$(\mathbf{A}) \ \frac{1-a^2}{1-2a\sin\Omega+a^2}$	$(\mathbf{B}) \ \frac{1-a^2}{1-2a\cos\Omega+a^2}$
$(\mathbf{C}) \ \frac{1-a^2}{1-2ja\sin\Omega+a^2}$	(D) None of these
-	$\frac{z(8z-7)}{4z^2-7z+3}$. Given x(n) is causal, then x[∞] is
(A) 1	(B) 2
$(\mathbf{C}) \propto (1)$	(D) 0
j. The signal $x(t) = e^{j(2t + \pi/4)}$ is a	
(A) power signal with $P_{\infty} = 1$	(B) power signal with $P_{\infty} = 2$
(C) energy signal with $E_{\infty} = 2$	
• -	tions out of EIGHT Questions. n carries 16 marks.

- **Q.2** a. Compute the output y(t) for a continuous time LTI system whose impulse response h(t) and the input x(t) are given by $h(t) = e^{-\alpha t}u(t)$ $x(t) = e^{\alpha t}u(-t)\alpha > 0.$ (8)
 - b. Determine the response y(n), $n \ge 0$, of the system by second order difference equation, y(n)-3y(n-1)-4y(n-2) = x(n)+2x(n-1) for the input $x(n) = 4^n u(n)$ (8)
- Q.3 a. Consider the periodic sequence x[n] shown in Fig.1. Determine the fourier coefficient c_k and sketch the magnitude spectrum $|c_k|$. (8)

b. Find the cosine representation fourier series for the periodic signal shown in Fig.2 (8)

a. Consider a continuous time LTI system described by $\frac{dy(t)}{dt} + 2y(t) = x(t)$. **O.4** Using the fourier transform, find the output y(t) to each of the following input signals:

(i)
$$x(t) = e^{-t}u(t)$$
 (ii) $x(t) = u(t)$ (8)

b. (i) Verify the integration property, that is $\int x(\tau) d\tau \leftrightarrow \pi X(0) \delta(\omega) + \frac{1}{i\omega} X(\omega)$

(ii) Prove the frequency convolution theorem, that is

$$x_1(t)x_2(t) \leftrightarrow \frac{1}{2\pi} X_1(\omega) * X_2(\omega)$$
 (8)

(8)

- a. Consider a casual LTI system described by the difference equation **Q.5** $y[n] + \frac{1}{2}y[n-1] = x[n]$
 - (i) Determine the frequency response $H(j\Omega)$ of the system.
 - (ii) What is the response of the system to the following input $\mathbf{x}[\mathbf{n}] = \delta[\mathbf{n}] - \frac{1}{2}\delta[\mathbf{n}-1]$
 - b. Consider a system consisting of the cascade of two LTI system with frequency responses,

$$H_1(e^{j\omega}) = \frac{2 - e^{-j\omega}}{1 + \frac{1}{2}e^{-j\omega}}, \text{ and, } H_2(e^{j\omega}) = \frac{1}{1 - \frac{1}{2}e^{-j\omega} + \frac{1}{4}e^{-j2\omega}}$$

Find the difference equation describing the overall system. (8)

Find the difference equation describing the overall system.

- Q.6 a. The frequency response of a causal and stable continuous time LTI system is expressed as $H(j\omega) = \frac{1-j\omega}{1+j\omega}$
 - (i) Determine the magnitude of $H(j\omega)$.

(ii) Find which of the following statements is true about $\tau(\omega)$, the group delay of the system

- (a) $\tau(\omega) = 0$, for $\omega > 0$
- (b) $\tau(\omega) > 0$, for $\omega > 0$
- (c) $\tau(\omega) < 0$, for $\omega > 0$ (8)

www.StudentBount

Code: AE57/AC57/AT57

Subject: SIGNALS AND SYS

ROLL NO.

- b. Discuss the following:
 - first order sample-hold circuit (i)
- StudentBounty.com (ii) reconstruction of analog signal from the sampled version using a low-pass filter.
- **Q.7** a. Find the inverse laplace transform of the following:

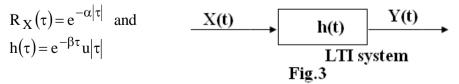
(i)
$$X(s) = \frac{s}{s^2 + 5s + 6}$$
 (ii) $X(s) = \frac{3s^2 + 8s + 6}{(s+2)(s^2 + 2s + 1)}$ (8)

- b. Consider a continuous-time LTI system for which the input x(t) and output y(t) are related by y''(t) + y'(t) - 2y(t) = x(t)
 - (i) Find the system function H(s).
 - (ii) Determine the impulse response h(t) for each of the following 3 cases
 - (a) the system is causal.
 - (b) the system is stable.
 - (c) the system is neither causal nor stable. (8)

0.8 a. Find the inverse z-transform of

(i)
$$X(z) = \frac{1}{(1-az^{-1})^2}$$
 $|z| < |a|$
(ii) $X(z) = \frac{\frac{1}{4}z^{-1}}{(1-\frac{1}{2}z^{-1})(1-\frac{1}{4}z^{-1})}$ ROC: $|z| > \frac{1}{2}$ (8)

b. A casual system is represented by the following difference equation:


$$y(n) + \frac{1}{4}y(n-1) = x(n) + \frac{1}{2}x(n-1)$$

(i) Find the system function H(z) and give the corresponding region of convergence.

(ii) Find the unit sample response of the system.

(iii) Find the frequency response $H(e^{j\omega})$ and determine its magnitude and phase. (8)

- a. Consider the random process $X(t) = A\cos(\omega_0 t + \phi)$ where A and ω_0 are Q.9 constants and ϕ is random variable distributed on $[-\pi,\pi]$. Check when X(t) is Ergodic? (8)
 - b. For the linear time invariant system shown in Fig.3, if the autocorrelation $R_x(e)$ of random process X(t) and impulse response $h(\tau)$ is expressed by

Where, α and β are constants and $u(\tau)$ is unit step function. Then, find the spectral density function of output process Y(t). (8)

www.StudentBounty