Code: AE27 Subject: DIGITAL HARDWARE DA

AMIETE - ET (OLD SCHEME)

JUNE 2012 Time: 3 Hours Max. Marks: 100

Student Bounty.com PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

• Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in

• The of t	an	commencement of the examination	ected by the invigilator after 45 minutes
que	estic	on carries 16 marks.	ay be suitably assumed and stated.
Q.1	Choose the correct or the best alternative in the following: (2×10^{-5})		
	a.	A combinational circuit with many inputs and outputs has many different paths, propagation delay of each path is	
		(A) Same(C) Same only for critical paths	(B) Different(D) Different only for critical paths
	b.	To make "Two ANDs and one OR	a "how many NANDs are required
		(A) 4 (C) 2	(B) 3(D) Not possible
	c.	c. Two's complement of a two's complement will return	
		(A) 0(C) Original number	(B) Same number(D) none
	d. Calculate the delay at an i-th stage in finding CY_i assuming that each st FA takes propagation time t_s .		in finding CY _i assuming that each stage of
		(A) $2 \cdot t_s$ (C) $2 / t_s$	(B) 2 .i . t _s (D) i. t _s
	e.	How many select lines will a 32:1	multiplexer will have
		(A) 5 (C) 9	(B) 8 (D) 11
	f. In an 1k x 8 ROM, number of address lines and data lines required are		ess lines and data lines required are
		(A) 8 and 8 (C) 10 and 8	(B) 12 and 8 (D) None

POWARE DA COLLABORATION OF THE POPULATION OF THE

Code: AE27 Subject: DIGITAL HARDWARE DA

- g. In VHDL, Configuration statement is used to
 - (A) Bind a entity and architecture
 - **(B)** Bind a components and functions
 - (C) Bind a packages and libraries
 - (**D**) Bind a component instance to an entity-architecture pair
- h. The entity specifies
 - (A) The number of ports
- **(B)** The direction of ports
- (C) The type of ports
- (**D**) All the above
- i. The mechanism for delaying the new value is called
 - (A) Statement concurrency
- **(B)** Event scheduling
- (**C**) Both (**A**) and (**B**)
- **(D)** None of the above
- j. All the statements enclosed by the PROCESS are
 - (A) Concurrent statements
- (B) Sequential statements
- (C) Configuration statements
- **(D)** None of the above

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- Q.2 a. Explain top-down and bottom-up approaches in digital systems hierarchical implementation. (6)
 - b. Use the tabulation method to generate the set of prime implicants for the following function

$$f(x_1, x_2, x_3, x_4) = \Sigma(0, 1, 2, 5, 6, 7, 8, 9, 10, 13, 15)$$
(10)

Q.3 a. Find a decomposition of

$$f(x_1, x_2, x_3, x_4, x_5) = \Sigma(2,3,4,5,6,7,8,9,16,17,18,19,22,23,28,29) \text{ into } F(G_1(x_1, x_3), G_2(x_2, x_5), x_4).$$
 (10)

b. Explain the properties of the symmetric function.

- **(6)**
- Q.4 a. Explain all the design constructs of VHDL to describe logic. (6)
 - b. Write a VHDL code for describing function f = ab + cd using behavioral model. (5)
 - c. Write a VHDL code for describing full-adder using data-flow model. (5)
- Q.5 a. Design 1-line-to-8-line Demultiplexer using basic logic gates. (6)
 - b. Design BCD synchronous counter using T- flip flop. (6)

AE27 / JUNE - 2012

2

AMIETE - ET (OLD SCHEME)

Student Bounty.com Code: AE27 **Subject: DIGITAL HARDWARE DI**

- c. Draw SR-Latch circuit using NOR gate and mention it's truth table.
- 0.6 a. Define FSM? Explain Mealy and Moore FSM.

- b. Explain state equivalence and machine minimization in sequential machines. (8)
- a. Using PLA implement Full –Adder functionality. **Q.7**

(6)

b. Explain how PAL can be used in digital system design.

(6)

- A given memory chip has 12 address pins and 4 data pins. Find the organization and Capacity.
 - (ii) Example 2: A 512K-memory chip has 8 pins for data. Find the organization and number of address pins for this memory chip.
- **Q.8** a. What are the attributes in VHDL? List all types of attributes available in VHDL. **(8)**
 - b. Realize 13 variable symmetric function using 10 full adders and 1 decoder. **(8)**
- **Q.9** a. Define data subsystem. Explain all the important modules required to implement data subsystem. **(8)**
 - b. Draw the block diagram of micro-programmed controller and explain the importance of each unit in that. **(8)**