studentBoun ROLL NO.

Code: AE25

Subject: PHYSICAL ELECTRONICS AND SOLID STA

AMIETE - ET (OLD SCHEME)

Time: 3 Hours

JUNE 2012

xy.com Max. Marks: 100

 (2×10)

ES

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE OUESTION PAPER.

NOTE: There are 9 Questions in all.

- **Question 1 is compulsory and carries 20 marks.** Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the O.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

- a. What occurs when a conduction-band electron loses energy and falls back into a hole in the valence band?
 - (B) Recombination (A) Doping (C) Generation
 - (**D**) None of the above

b. Total emitter current is

(A) $I_E - I_C$	$(\mathbf{B}) \mathbf{I}_{\mathrm{C}} + \mathbf{I}_{\mathrm{E}}$
(C) $I_B + I_C$	$(\mathbf{D}) \ \mathbf{I}_{\mathrm{B}} - \mathbf{I}_{\mathrm{C}}$

- c. Hall Effect can be used
 - (A) to find the type of semiconductor
 - (B) to find carrier concentration
 - (C) to measure conductivity
 - (D) all of the above

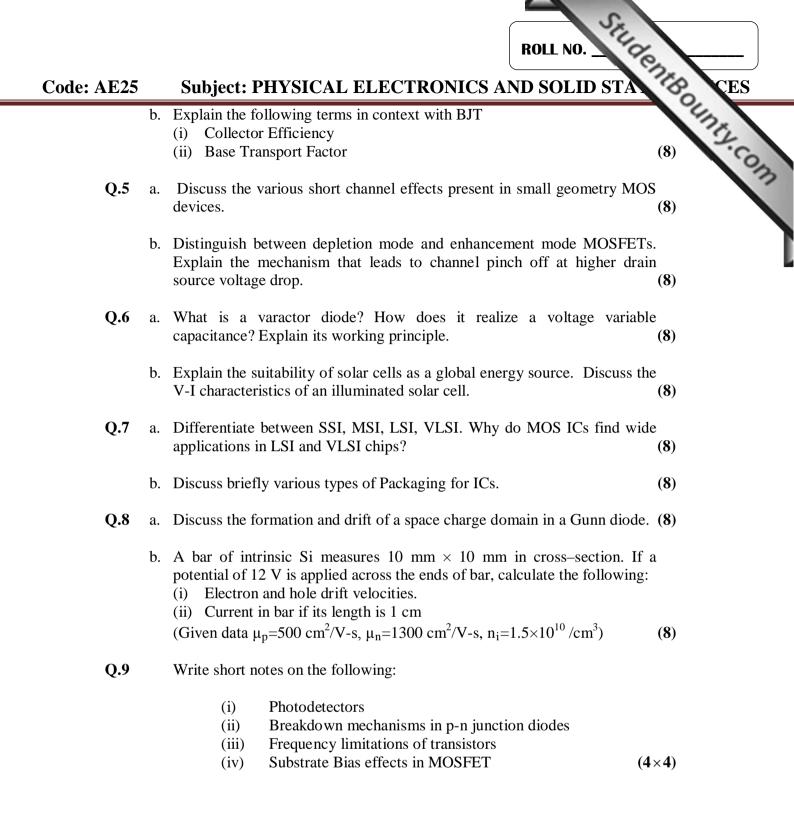
d. Transistor is a

- (A) Current controlled current device
- (B) Current controlled voltage device
- (C) Voltage controlled current device
- (D) Voltage controlled voltage device
- e. What is the current gain for a common-base configuration where $I_E = 4.2 \text{ mA}$ and $I_C = 4.0 \text{ mA}?$

(A)	16.80	(B) 1.05
(C)	0.2	(D) 0.95

AMIETE - ET (OLD SCHEME)

		ROLL NO.	
Code: AE25	5 Subject: PHYSICAL ELECTRONICS AND SOLID STA		
f.	The normal operating region for a zener diode is the		
	(A) Forward-Bias region(C) Zero-Crossing region	ROLL NO. CTRONICS AND SOLID STA zener diode is the (B) Reverse-Bias region (D) Reverse-Breakdown region	
g.	Which diode operates only with majority carriers?		
	(A) Laser(C) Schottky	(B) Tunnel(D) Step Recovery	
h.	Midpoint bias for a D-MOSFET is $I_D = $, obtained by setting $V_{GS} = 0$.		
	 (A) I_{DSS} / 2 (C) I_{DSS} 	 (B) I_{DSS} / 3.4 (D) None of the above 	
i.	LED is forward-biased. The diode should be on, but no light is showing. A possible trouble might be		
	 (A) the diode is open (B) the series resistor is too small. (C) none, the diode should be off if forward-biased. (D) the power supply voltage is too high. 		
j.	The process of emitting photons from a semiconductive material is called		
	(A) photoluminescence(C) Radiation	(B) electroluminescence(D) Simulation	


Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- Q.2 a. Draw and explain the energy band diagrams of a direct band gap and indirect band gap semiconductors. Mention the suitable applications of both.
 - b. Explain the significance of Hall Effect in determining the mobility of charge carriers in extrinsic semiconductors. The resistivity of a bar is 230,000 Ω -cm when a magnetic flux of 0.1 Wb/m² is applied to the bar. For semiconductor bar d=w=3 mm. Current measured is 10 μ A and Hall Voltage is 50 mV. Determine the mobility of holes. (8)
- Q.3 a. Explain the different capacitive effects existing in p-n junction diodes. (8)
 - b. A conducting line on IC chip is 2.5 mm long and has a cross sectional area of 5×10^{-12} m². A current of 2 mA produces a voltage drop of 40 mV across the line. If mobility of electrons is 500 cm²/V-s, find the electron concentration. (8)
- Q.4 a. Describe "Punch Through" and "Early Effect" in practical BJT devices. (8)

AE25 / JUNE - 2012

AMIETE - ET (OLD SCHEME)

2

3