Code: AE20 Subject: MICROWAVE THEORY & TECHNIQ

AMIETE - ET (OLD SCHEME)

JUNE 2012

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH

PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

Time: 3 Hours

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1	Choose the correct or the best alternative in the following:	$(2 \times 10^{\circ})$
V.1	Choose the correct or the best afternative in the following.	(4 × 10

- a. A microwave junction is supposed to be matched at all ports if in the S matrix
 - (A) all the diagonal elements are zero
 - (B) all the diagonal elements are equal but not zero
 - (C) all the diagonal elements are complex
 - (**D**) is Hermitian
- b. Horizontal polarization is nothing but
 - (A) x-polarization (B) y-polarization
 - (C) circular polarization (D) elliptical polarization
- c. At high frequencies, conventional vacuum tubes have limitations with the presence of
 - (A) Transit time effects (B) low bandwidth
 - (C) high noise (D) vacuum
- d. The maximum electronic efficiency of reflex klystron is
 - **(A)** 40%. **(B)** 50%.
 - (C) 22.7% (D) 35%.
- e. Directional coupler is
 - (A) non-reciprocal device(B) reciprocal device(C) an amplifier(D) an oscillator

AE20 / JUNE - 2012 1 AMIETE - ET (OLD SCHEME)

Code: AE20 Subject: MICROWAVE THEORY & TECHNIQ

- Student Bounty Com f. In a transmission line $Zl \neq Z0$ and maximum voltage of the standing wave is V& minimum voltage is 3 V then
 - **(A)** VSWR=1.67dB
- **(B)** VSWR= 2.34dB
- (C) VSWR= 4.44dB
- **(D)** VSWR= 8.88dB
- g. The kinetic energy of the beam remains unchanged in the interaction between an electron beam & an RF wave in a
 - (A) multi-cavity klysron.
- **(B)** crossed-field amplifier.
- (C) travelling wave tube
- (**D**) gyrotron
- h. The lowest TM mode in a rectangular waveguide of cross section $a \times b$ with a>b will be
 - (A) TM_{01}

(B) TM_{10}

(C) TM_{12}

- **(D)** TM_{11}
- The phase shift of a wave whose frequency is 1 GHz in free space
 - (A) 21 rad/m

(B) 20.93 rad/m

(C) 40.93 rad/m

- **(D)** 0.3 rad/m
- The maximum unambiguous range in a system depends on
 - (A) maximum power of the transmitter (B) pulse repetition frequency
 - (C) width of the transmitted pulse
- (**D**) sensitivity of the radar receiver

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- **Q.2** a. Explain Impedance matching. Describe the various methods of achieving impedance matching with their advantages and disadvantages. (12)
 - b. How are waveguides different from normal two wire transmission lines? Discuss the similarities and dissimilarities **(4)**
- 0.3 a. What are cavity resonators? Derive the expression for resonant frequencies for a rectangular and circular resonator **(8)**
 - b. The TE₁₀ mode is propagated in a rectangular waveguide of dimensions a=6 cms and b=4 cms. By means of a travelling detector, the distance between a maximum and minimum is found to be 4.55 cms. Find the frequency of the wave **(8)**

AE20 / JUNE - 2012

AMIETE - ET (OLD SCHEME)

		S. S	
C	, do	AE20 Subject: MICROWAVE THEORY & TECHNIC	
	oue:	AE20 Subject: MICROWAVE THEORY & TECHNIC	188
Q.4	a.	Obtain the scattering matrix of E-H Plane Tee.	(8) THATE
	b.	Explain the working of isolator, gyrator and circulator using ferrites Mention their applications.	(8) (8) (8) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9
Q.5	a.	What are the advantages achieved by adding more cavities in between the input and the output cavities in a klystron tube? With the help of relevant schematic and applegate diagram, briefly describe the bunching phenomenon in a two-cavity klystron.	nt T
	b	What are slow wave structures? Explain how a helical TWT achie amplification.	eves (8)
Q.6	a.	A four cavity klystron VA-628 has the following parameters: beam voltage Vo=14.5 kV, beam current=1.4 A, operation frequency f=10 GHz, delectron charge density ρ o=10 ⁻⁶ c/m³, RF charge density ρ = 10 ⁻⁸ c/m velocity perturbations V =10 ⁵ m/sec. Determine (i) dc electron velocity (ii) the dc phase constant (iii) the plasma frequency, (iv) the reduced plasma frequency for R=0.4 (v) the delectron current density, (vi) the instantaneous beam current density.	c 3,
	b.	Explain the different types of losses in Microstrip lines.	(8)
Q.7	a.	Describe the method for measurement of impedance at microwav frequencies.	e (8)
	b.	What are the limitations of conventional tubes at microwave frequencies Explain how these limitations can be overcome	? (8)
Q.8	a.	What are avalanche transit time devices? Explain the operation construction and application of the following: (i) IMPATT (ii) TRAPTT	1,
		(iii) BARITT	(12)
	b.	Discuss the various factors that affect the satellite communications.	(4)
Q.9		Write short notes on any \underline{TWO} of the following:	
		(i) Horn antenna and slot antenna(ii) Tunnel Diode	

(iii) Magnetron

(iv) Measurement of dielectric constant

 (2×8)