ROLL NO.

Code: AE05 Subject: BASIC ELECTRONIC

AMIETE - CS/IT (OLD SCHEME)

Time: 3 Hours JUNE 2012 Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1	Choose the correct or best alternative in the following:	(2×10)

- a. The intersection of a V-I curve with the load line is called the
 - (A) Transfer curve(B) transition point(C) Load point(D) Q-point
- b. If a single diode in a center tapped full-wave rectifier opens, the output is
 - (A) 0 V (B) half wave rectified
 - (C) Reduced in amplitude (D) unaffected
- c. The purpose of a small capacitor placed across the output of an IC regulator is to
 - (A) Improve transient response
 - (B) couple the output signal to the load
 - (C) Filter the ac
 - (**D**) protect the IC regulator
- d. When the collector resistor in a CE amplifier is increased in value, the voltage gain
 - (A) Increases(B) decreases(C) Is not affected(D) becomes erratic
- e. A type of transistor that is normally ON when the gate to source voltage is zero is
 - (A) JFET(B) D-MOSFET(C) E-MOSFET(D) ALL of them.
- f. Cross over distortion is a problem for
 - (A) Class A amplifiers (B) Class AB amplifiers

SHIIDENH BOUNTY COM **Subject: BASIC ELECTRONIC**

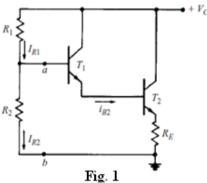
- g. The output of a particular op-amp increases 8V in 12µs the slew rate is
 - (A) $96 \text{ V/}\mu\text{s}$

Code: AE05

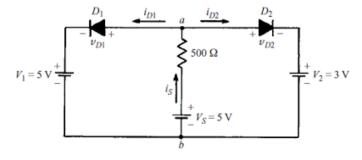
(B) $0.67 \text{ V/}\mu\text{s}$

(C) $1.5 \text{ V/}\mu\text{s}$

- (**D**) none of these.
- h. In Integrator, the feedback element is a
 - (A) Resistor

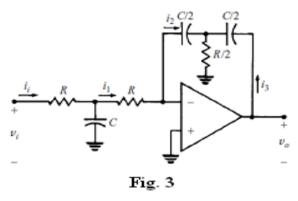

(B) Capacitor

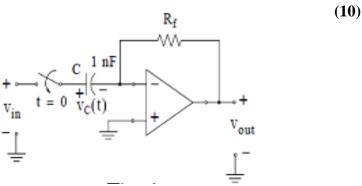
(C) Diode


- (D) Inductor
- Wein-bridge oscillations are based on
 - (A) Positive feedback
- **(B)** negative feedback
- (C) The piezoelectric effect
- (D) high gain
- In a basic series regulator, V_{OUT} is determined by
 - (A) the control element
- (B) the sample circuit
- (C) the reference voltage
- (**D**) answers (**B**) and (**C**).

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

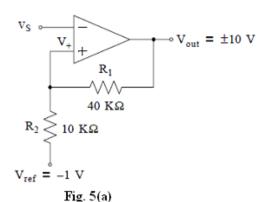
Q.2 The Si Darlington transistor pair of Fig. 1 has negligible leakage current, and $\beta_1 = \beta_2 = 50$. Let $V_{CC} = 12V$; $R_E = 1 \text{ k}\Omega$, and $R2 \rightarrow \infty$. (i) Find the value of R_1 needed to bias the circuit so that $V_{CEO2} = 6V$. (ii) With R_1 as found in part a, find V_{CEQ1}. **(8)**

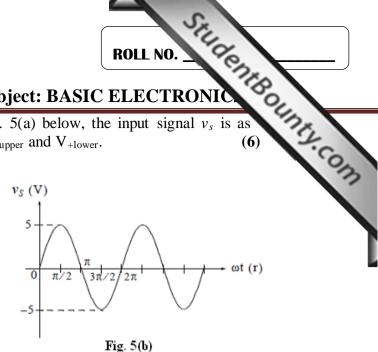

- b. What is load line? Discuss why ac load line differs from the dc load line. Draw the ac load line for a CE configuration amplifier and find the Q-point.(8)
- a. In the circuit of Fig. 2, Diodes D1 and D2 are ideal diodes. Find I_{D1} and I_{D2} .(8) **Q.3**


Code: AE05 **Subject: BASIC ELECTRONIC**

Student Bounty Com b. A Zener diode has the specifications $V_Z = 5.2 \text{ V}$ and $P_{Dmax} = 260 \text{ mW}$. Assume $R_{Z=0}$ (i) Find the maximum allowable current i_Z when the Zener diode is acting as a regulator. (ii) If a single-loop circuit consists of an ideal 15-V dc source V_S , a variable resistor R, and the described Zener diode, find the range of values of R for which the Zener diode remain in constant reverse breakdown with no danger of failure. **(8)**

- **Q.4** Describe the construction and operation of JFET's. Explain the parameters g_m , I_{DSS} , I_{GSS} , $V_{GS(OFF)}$ and V_P . Describe the transconductance curve for a JFET and explain how it relates to the drain characteristic curve.
 - b. Explain the operation of a class B push pull power amplifier with a neat circuit diagram and waveforms. Determine its collector efficiency. What is cross over distortion and how do you eliminate it in the above power amplifier?
- 0.5 An amplifier has a voltage gain of 4000. It's input impedance is 2 K ohm and output impedance is 60 K ohm. Calculate the voltage gain, input and output impedance of the circuit if 5% of the feedback is fed in the form of series negative voltage feedback. **(8)**
 - b. Find the relationship between v_o and v_i in the circuit of Fig. 3. **(8)**


- **Q.6** The time constant of the differentiator circuit of Fig.4 is $\tau=1$ ms, and $v_c(0^-)=0$
 - (i) Find the value of the feedback resistor R_f
 - (ii) Derive the transfer function.
 - (iii) Find the magnitude and phase at f= 1 kHz
 - (iv) If a resistor is added in series with the capacitor to limit the high frequency gain to 100, what should be the value of that resistor?



Code: AE05

Subject: BASIC ELECTRONIC

b. For the Schmitt trigger circuit of Fig. 5(a) below, the input signal v_s is as shown in Fig 5(b), find and sketch V_{+upper} and V_{+lower} .

- **Q.7** a. Explain the use of an external pass transistor and current limiting in IC voltage regulator. **(8)**
 - b. Implement the JK FF using NAND GATES ONLY. **(8)**
 - **Q.8** a. Prove that for a Wien Bridge oscillator the gain of amplifier should equal to δ i.e deviation where $\delta > 3$. Also derive expression for frequency of oscillation with suitable diagram **(8)**
 - b. A combinational logic circuit is required which produces an output D from four input signals A, B, C1 and C2 according to the following rules.
 - (i) If C1 and C2 are both 1, the output D must be 0.
 - (ii) If C1 and C2 are both 0 the output D must be 1.
 - (iii) If C1=1 and C2=0, then output D must be equal to input A.
 - (iv) If C1=0 and C2=1, then output D must be equal to input B.
 - (i) Construct the truth table for *D*.
 - (ii) Construct the Karnaugh map for *D*.
 - (iii) By combining 1s in the largest possible groups on the Karnaugh map, obtain an expression for D in the simplest sum-of-products form.
 - (iv) Draw the gate implementation of the logic circuit to generate the output D using AND gate, OR gates and inverters. **(8)**
- **Q.9** Write short note on any **TWO**:
 - (i) 555 timer
 - (ii) Transistor biasing techniques
 - (iii) MOSFET. (2×8)