Code: AE04

Subject: MATERIALS AND PROCE

ROLL NO.

AMIETE - ET (OLD SCHEME)

Time: 3 Hours

JUNE 2012

Max. Marks: 10

studentBounty.com PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE OUESTION PAPER.

NOTE: There are 9 Questions in all.

- Ouestion 1 is compulsory and carries 20 marks. Answer to 0.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

0.1 Choose the correct or the best alternative in the following:

 (2×10)

a. Thermal expansion of material arises from

(A) strong bonds	(B) thermal vibrations
(C) Weak bonds	(D) asymmetry of PE curve

b. The Burgers vector of a dislocation in NaCl is

(A) $5.58 \mathrm{A}^{\circ}$	(B) 4.83 A°
(C) 3.95 A [°]	(D) 2.79 A [°]

c. Zone refining will be more efficient if the ratio of impurity in the solid to that in the liquid is

(A) 0.01	(B) 0.1
(C) 0.4	(D) ∼1.0

d. The fastest diffusing species in Fe is

(A)	Н	(B) Ni
(C)	С	(D) W

e. The Fermi level for Cu is 7ev. The maximum velocity of free electrons at 0K is

(A)	1570 Km/s	(B) 1110 Km/s
(C)	860 Km/s	(D) 0Km/s

1

AMIETE - ET (OLD SCHEME)

		Roll NO. Subject: MATERIALS AND PROCES is (B) $1.095/m^3$ (D) $1.095 \times 10^6/m^3$
Code:	AE04	Subject: MATERIALS AND PROCES
f.	The resistivity of pure intrinsic carrier density	e silicon at room temperature is 3000 $\Omega-m$, h
	(A) $1.095 \times 10^{16} / \text{m}^3$	(B) $1.095/m^3$
	(C) $1.095 \times 10^{10} / \text{m}^3$	(D) $1.095 \times 10^6 / \text{m}^3$
g.	g. With increase in temperature, the orientation polarization	
	(A) increases(C) remains constant	(B) decreases(D) None of these
h.	The curie temperature of	f Cobalt is
	(A) 2000 K(C) 1040 K	(B) 1400 K (D) 650 K
i.	During purification of S is	i, the liquid that is produced by dissolving Si in HCL
	(A) S_iCl_4	(B) $S_iH_2Cl_2$
	(C) S_iH_3Cl	(D) $S_i HCl_3$
j.	j. Effective number of atoms in the DC unit cell are	
	(A) 8 (C) 5	(B) 6 (D) 4

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2	a.	Calculate the c/a ratio for an ideally closed packed HCP crystal. (8)
	b.	What is Bragg's law? Discuss powder method to determine structure of crystals. (8)
Q.3	a.	Compare point, line, surface & volume imperfections in brief. (8)
	b.	What is binary phase diagram? How it is drawn? Draw silver-platinum phase diagram.(8)
Q.4	a.	State Fick's First and Second Laws of diffusion. Write applications of second law. (8)
	b.	Discuss requirement of heat treatment. Explain change in mechanical properties after annealing. (8)
AE04	/ JL	INE - 2012 2 AMIETE - ET (OLD SCHEME)

		ROLL NO.	
Co	ode:	AE04 Subject: MATERIALS AND PROCES	718
Q.5	a.	AE04 Subject: MATERIALS AND PROCES Discuss thermal effect of welding on parent metal and its mechanica properties. Explain photolithography and write its applications.	(8) CHINE
	b.	Explain photolithography and write its applications.	(8)
Q.6	a.	What is basic assumption taken in free electron theory? Discuss Fermi Dirac distribution of free electrons at different temperatures.	(8)
	b.	Calculate conductivity of copper at 300K. The collision time τ for electron scattering is 2×10^{-14} s at this temperature.	r (8)
Q.7	a.	Draw Fermi level diagram for pure semiconductor based on Fermi-Dirac probability distribution and discuss conductivity in pure crystal.	c (8)
	b.	Show that the conductivity of a semiconductor is minimum when concentration of electrons $n_e = n_i \sqrt{\frac{\mu_h}{\mu_e}}$. Find the minimum value of	
		conductivity.	(8)
Q.8	a.	Discuss properties and applications of Glass and Mica as dielectric material.	c (8)
	b.	What is polarization? Calculate relative dielectric constant of a materia when it is inserted in a parallel plate capacitor of area 100mm^2 and	
		distance of separation of 2 mm is 10^{-9} F.	(8)
Q.9	a.	Write properties and applications of permalloy and ferrites.	(8)

b. What is hysteresis loop? Classify the magnetic materials based on their hysteresis loop. How we calculate hysteresis loss using hysteresis loop? (8)

3