Code: AC65 **Subject: DISCRETE STRUC**

AMIETE - CS (NEW SCHEME)

SHIIDENTBOUNTY.COM **JUNE 2012** Time: 3 Hours

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the O.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

0.1 Choose the correct or the best alternative in the following:

 (2×10)

- a. Let A be a finite set of size n. The number of elements in the power set of $A \times A$
 - (A) 2^{2^n}

(C) $(2^n)^2$

- (D) $(2^2)^n$
- b. Two events A and B are mutually exclusive events if
 - (A) $A \cap B = \phi$

- **(B)** $A \cap B = A B$
- (C) $A \cup B = S$ (sample space)
- (**D**) None of these
- c. The contra-positive of $P \rightarrow \sim Q$ is
 - $(A) \sim P \rightarrow \sim Q$

(B) $P \rightarrow Q$

(C) $\sim P \rightarrow O$

- (**D**) $P \rightarrow \sim O$
- d. Find the negation of "There exists a dog that is 25 years old".
 - (A) Some dog is not 25 years old
- (B) All dog is 25 years old
- (C) Every dog is 25 years old
- (**D**) Every dog is not 25 years old
- e. Which of the following is correct?
 - **(A)** $(\forall X)(\exists Y)\{X+Y=100\}$
- **(B)** $(\exists Y)$ $(\forall X)$ $\{X+Y=100\}$
- **(C)** $(\forall X)(\forall Y)\{X+Y=100\}$
- (**D**) None of these
- f. A relation R is reflexive on a set A if
 - (A) Domain (R) \subset Range (R)
- **(B)** Domain (R) \subset Range (R)
- (C) Domain (R) = Range (R) \neq A
- (**D**) Domain (R) = Range (R) = A
- g. Relation $a_n = 3a_{n-1} + n$ is
 - (A) homogeneous recurrence relation
 - (B) non homogeneous recurrence relation
 - (C) generating function
 - (D) None of these

Code: AC65

Subject: DISCRETE STRUC

- SHILDENT BOUNTS, COM h. The value of the parameter α , for which the function $f(x) = 1 + \alpha x$, $\alpha \neq 0$ is the inverse of itself, is
 - (A) 2

(B) -1

(C) 1

- **(D)** 2
- i. Which of the following is not true?
 - (A) Every group of prime order is cyclic
 - (B) Every subgroup of a cyclic group is cyclic
 - (C) Every proper subgroup of an infinite cyclic group is infinite
 - (**D**) Every cyclic group may not be abelian
- j. Which of the following is not a ring with respect to addition and multiplication?
 - (A) Set of all natural numbers
 - **(B)** Set of all integers
 - (C) Set of all rational numbers
 - (**D**) Set of all $n \times n$ matrices with their elements as real numbers

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- a. If A, B and C are any sets, prove that $A \cap (B C) = (A \cap B) C$ **(5)** Q.2
 - b. Write all the subsets of the set $S = \{ \phi, \{ \phi \} \}$ where ϕ is null set. **(5)**
 - c. A problem is given to four students A, B, C, D whose chances of solving it are $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, $\frac{1}{5}$ respectively. Find the probability that the problem is solved.

(6)

Q.3 a. Simplify
$$[\sim (P \vee Q) \wedge R] \vee [R \wedge (Q \vee P)]$$
.

(5)

b. Prove that
$$[(P \lor \sim Q) \to P]$$
 and $(P \lor Q)$ are equivalent.

(5)

c. Prove that
$$P \rightarrow (O \rightarrow R) = (P \land O) \rightarrow R$$

(6)

Q.4 a. Write the predicate calculus (using quantifiers) representation of the following sentence:

"Some baby boys are more mischievous than all baby girls".

Use B(X): X is a baby boy, G(X): X is a baby girl, N(X, Y): X is mischievous than Y. **(7)**

b. Consider the following knowledge base:

$$\forall X \ \forall Y \ cat(X) \land fish(Y) \Rightarrow likes_to_eat(X, Y)$$

 $\forall X \operatorname{calico}(X) \Rightarrow \operatorname{cat}(X)$

 $\forall X \operatorname{tuna}(X) \Rightarrow \operatorname{fish}(X)$

Convert these into Horn clauses (convert into conjunction of disjuncts by removing all quantifiers and implications). (9)

Code: AC65

Subject: DISCRETE STRUC

- **Q.5** a. Solve the recurrence relation $a_n = a_{n-1} + 2a_{n-2}$ with $a_0 = 2$ and $a_1 = 7$.
- Student Bounty.com b. Prove the following by mathematical induction: $(1+x)^n > 1 + nx$ for natural number $n \ge 2$, x > -1 and $x \ne 0$.
- a. Let A denotes the set of ordered pair of all natural numbers (N×N). Relation R **Q.6** is defined as follows:

for
$$(a, b)$$
, $(c, d) \in A$, $(a, b) R (c, d)$ iff $(a + d) = (b + c)$.
Prove that the relation R is equivalence relation. (8)

- b. If (L, \leq) is a lattice, then prove that the dual of the poset (L, \leq) is also a lattice.
- a. Let A: $\{a, b, c, d\}$, B = $\{p, q, r, s\}$ denotes two sets. Identify which of the 0.7 following is (are) a function/ not a function from A to B? Give reasons for each.
 - (i) $\{(a, p), (b, q), (c, r)\}$
 - (ii) $\{(a, p), (b, q), (c, s), (d, r)\}$
 - (iii) $\{(a, p), (b, s), (b, r), (c, q)\}$

(iv)
$$\{(a, p), (b, r), (d, r), (c, q)\}$$
 (8)

- b. Let $f: \mathbb{R} \to \mathbb{R}$ be a mapping defined as f(x) = ax + b; $a, b \in \mathbb{R}$, $a \neq 0$. Is finvertible? Justify.
- **Q.8** a. Prove that fourth roots of unity form a cyclic group. Find the order of each element of the group.
 - b. Let G be a multiplicative group and $ba = a^p b^q$ where $a, b \in G$ and $p, q \in Z^+$. Prove that order of $a^p b^{q-2}$ is equal to order of a^{p-1} . (8)
- a. Show that the set of numbers of the form $a + b\sqrt{2}$, with a and b as rational **Q.9** numbers is a ring with respect to addition and multiplication.
 - b. Write a note on Generator matrix of an encoding function E and parity-check matrix associated with it. **(8)**