DEC

2012

StudentBounty.com Q2.a. If the current waveform shown in the waveform is applied to a 2 µF capacitor. Find the capacitor value $V_c(t)$. Assume the initial voltage across capacitor zero

	$v_c(t) = \frac{1}{C} \int_{0}^{t} i(t) dt$
For 0 <t<2ms< td=""><td>3t = =100t</td></t<2ms<>	3t = =100t
For 2ms <t<5ms< td=""><td>1(t) = -0.2 + 200/3 (t-2)</td></t<5ms<>	1(t) = -0.2 + 200/3 (t-2)
Thus for $0 < t < 2$ ms, the voltage is	8
$v_{c}(t) = \frac{1}{2 \times 10^{7}}$	$\frac{2 \text{ ms}}{6} \int_{0}^{2 \text{ ms}} 100 \text{ t } dt = 50 \left[\frac{t^2}{2}\right]_{0}^{2 \text{ ms}}$

At t = 2 ms,

$$V_{\rm C}$$
 (2 ms) = 50 X (4X10^-6)/2= 100 volts.

Also at t = 2 ms current/changes from + 0.2 A to 0.2 A. Thus current changes instantaneous but the voltage on capacitor will not change at this instant and will remain at 100 V only. At = 5 ms the voltage on capacitor is given as.

$$V_{\rm C}(t) = -50 \, \rm V$$

The required waveform is given as

www.StudentBounty.com lomework Help & Pastpapers

DECL

2012

i) Active and Passive Networks

Ans 2. b.

i) Active Networks: if the network consists of Energy sources or generators that generates power is known as Active Networks

Passive networks: if a network consists of only circuit elements and does not contain any energy sources.

ii) Lumped and Distributed Networks

Ans 2

ii) Lumped Network: it is the network in which all the circuit elements are physically separable.

Distributed Networks: it is the one in electrical elements such as resistance, capacitance and inductor are distributed across the line and cannot be separated.

O3. a.Derive the expression for current i (t) for the series R-L circuit if the step input is applied.

Ans 3 a.

From Kirchhoff's voltage law we obtain the

equation

$$L \frac{di}{dt} + Ri = E(t)$$

Eq. (2.8) yields the general solution

www.StudentBounty.com

DECI

2012

StudentBounts.com The last term approaches zero as t tends to infinity, so that i(t)tends to the limit value E_0/R ; after a sufficiently long time, i will practically be constant.

(b) Fig. E-1.2 shows the particular solution

$$i(t) = \frac{E_0}{R} [1 - e^{-(R/L)t}]$$

which corresponds to the initial condition i(0)=0.

b. Find out the Laplace transform of the given function:

(i) Unit Step function

(ii) sinh at

Ans 3b: Page No. 214- 215 of Textbook by 'G. K. Mittal'.

c. State and prove the initial value theorem.

Ans 3c. Page No. 34 of Textbook by 'G. K. Mittal'.

O4.a. State and prove Thevenin's theorem.

Ans: The behaviour of a linear network at any particular pair of terminals can be represented by an ideal -voltage generator in series with a resistance or impedance). The e.m.f. of the voltage generator is the voltage which would be produced between the terminals on open circuit, and the resistance (or impedance) is the ratio of this voltage to the current which would be produced in a short circuit joining the Terminal.

Proof. Referring to Fig. 2.11 the network N_1 consists of active sources together with resistances (or impedances). We have to show that viewed from terminals AB the network N_1 can be replaced by a voltage generator in series with a resistance/or impedance where the generator e.m.f. is the open circuit voltage between the points AB and the resistance (or impedance) is the resistance (or impedance) between A and B with all sources in the network reduced to zero.

2012

StudentBounty.com Let us suppose that with a resitance R connected between Aand B the current flowing is I and that this current is then reduced to zero upon insertion of a voltage generator as shown in Fig. 2.11(b). This (zero) current may be found by using superposition theorem as the sum of the currents caused when e is reduced to zero and when all the sources in N_1 are simultaneously reduced to zero. When e is reduced to zero the current is I of Fig. 2.11(a). When all the sources in N_1 are reduced to zero the current is given by $e/(R_1+R)$ where R_1

we thus find that theorem is valid when a resistance R is connected between A and B.

Let us next consider what would happen if instead of R a network N_2 (containing source) is connected to AB as shown in Fig. 2.11 (c). In this case let the current initially flowing be I_{\cdot} This current may be found as the superposition of two currents I_1 and I_2 for the circuits of Figs. 2.11 (d) and (e) where R_1 and R_2 are the resistances of N_1 and N_2 respectively between A and B when their sources are reduced to zero. However, from the first part of the proof

 $I_1 = \frac{1}{R_1 + R_2}$

DE57

www.StudentBounty.com Homework Help & Pastpapers

DECL

2012

$$I_{2} = \frac{-e_{2}}{R_{1} + R_{2}}$$
$$I = \frac{e_{1} - e_{2}}{R_{1} - e_{2}}$$

so that

$$I = \frac{e_1 - e_2}{R_1 + R_2}$$

where e_1 and e_2 are the open circuit voltages of N_1 and N_2 respec-tively. We have to show that this same current is produced by the circuit of Fig. 2.11 (f). This is clearly obvious if the current in Fig. 2.11 (f) is also formed by superposition with e_1 and the sources of N_2 in turn reduced to zero.

We, therefore, conclude that irrespective of what is connected to terminals AB, N_1 may be represented as stated in Thevenin's theorem.

b. Find the current flowing in branch AB in the unbalanced bridge shown in figure. When this branch has a resistance of i) 3.6 ohm ii) 0.36 ohm.

StudentBounty.com Solution. First step is to remove the branch AB. With this the circuit becomes as shown in Fig. E-6.2.

Next let us find the open circuit voltage, V_0 , across terminals a and b.

It is clear that

$$I_{1} = \frac{40}{20} = 2 \text{ amps}$$
$$I_{2} = \frac{40}{40} = 1 \text{ amp}$$
$$V = V_{1} = V_{2} = -8I_{1}$$

and

 $V_0 = V_a - V_b = -8I_1 + 4I_2$ $=-8\times2+4\times1=-12$ volts

Therefore,

Negative sign indicates that a is at a lower potential than b.

Fi &. E-6.3.

Fig. E-6.4.

DECL

2012

Finally let us find internal impedance, Z_g of the equivalent constant voltage source. Referring to Fig. E-6.3 this is the impedance between a and b. Redrawing Fig. E-6.3 as shown in Fig. E-6.4

Fig. E-6.5.

 $Z_{g} = \frac{12 \times 8}{12 + 8} + \frac{36 \times 4}{36 + 4}$ $=\frac{96}{20}+\frac{144}{40}$ =8.40 ohms.

Having found V_0 and Z_{gr} , we can draw Thevenin's equiva-lent circuit as shown in Fig. E-6.5.

When the resistance connected across AB is 3.60 ohms

 $I = \frac{12}{8 \cdot 40 + 3 \cdot 60} = 1$ amp from b to a

Also when the resistance connected across AB is 0.36 ohm

$$I = \frac{12}{8.40 + 0.36}$$

= $\frac{12}{8.76} = 1.37$ amps from b to a

www.StudentBounty.com Homework Help & Pastpapers

StudentBounts.com a. Find the Y parameters for the given resistive network containing a controlled 05. voltage.

Solution. With port 2 short circuited, the circuit reduces to the following form :

Then, we get

 \mathbf{Also}

$$\frac{-I_2}{1 \text{ S}} = 3 V_1 \qquad \dots (1)$$

$$\frac{I_3}{1 \text{ S}} + 3 V_1 = V_1$$
$$2V_1 = -I_3 \qquad ...(2)$$

 \mathbf{or}

 $I_1 = I_4 + I_3$...(3)

and

$$V_1 = \frac{I_3}{1 \text{ S}}$$
 ...(4)

...(2)

2012

From Eqs. (1) to (4), we get

 $I_1 = V_1 + I_3$ $= V_1 - 2V_1$ $= -V_1$ Hence $y_{11} = \frac{I_1}{V_1} \Big|_{V_2 = 0} = -1 \text{ S}$ $y_{21} = \frac{I_2}{V_1} \bigg|_{V_2 = 0} = \frac{-3V_1}{V_1} = -3$ S.

and

www.StudentBounty.com Homework Help & Pastpapers

DE57

DECL

2012

But since $V_1 = 0$, the voltage source $3V_1$ reduces to a short circuit. Hence the circuit reduces to the form shown in Fig. (b).

2 S in shunt with 1 S results in total admittance of 3 S at port 2.

 $y_{22} = 3$ S. Thus

 $\frac{-I_1}{1\,\mathrm{S}} = V_2$ Further

 $Y_{12} = -1S$

b.For the given bridged T network , find the Driving point admittance \mathbf{Y}_{11} and transfer impedance Y_{21} with 2Ω load resistance connected across port 2.

2012

Then analysis on the loop basis yields,

$$I_1\left(1+\frac{1}{s}\right) + I_2\left(\frac{1}{s}\right) - I_3 = V_1 \qquad \dots (1)$$

$$I_1\left(\frac{1}{s}\right) + I_2\left(1 + \frac{1}{s}\right) + I_3 = 0$$
 ...(2)

$$I_1(-1) + I_2 + I_3\left(2 + \frac{1}{s}\right) = 0$$
 ...(3)

$$\Delta = \begin{vmatrix} \left(1 + \frac{1}{s}\right) & \frac{1}{s} & -1 \\ \frac{1}{s} & \left(1 + \frac{1}{s}\right) & +1 \\ -1 & +1 & \left(2 + \frac{1}{s}\right) \end{vmatrix} \qquad \dots (4)$$

$$=\frac{s+2}{2}$$

$$\Delta_{11} = \begin{vmatrix} \left(1 + \frac{1}{s}\right) & +1 \\ +1 & \left(2 + \frac{1}{s}\right) \end{vmatrix} = \frac{s^2 + 3s + 1}{s^2}$$

Hence

 $Y_{11} = \frac{\Delta_{11}}{\Delta} = \frac{s^2 + 3s + 1}{s + 2}$

O6. a.For a parallel RLC circuit, obtain the expression for anti-resonance frequency and state the condition when the series resonant frequency is equal to anti-resonance frequency.

Ans: A parallel resonant or anti-resonant circuit consists of an inductor L in parallel with a capacitor C as shown in Fig. 6.a.1. R is a small resistance associated with the coil. The capacitor C is assumed to be lossless. The tuned circuit is driven by a voltage source V. Such a parallel tuned circuit is commonly used in tuned amplifiers, oscillators etc.

Analysis of parallel tuned circuit may he done more conveniently in terms of admittances instead of impedances. Thus admittance of the inductive branch is given by

$$Y_1 = \frac{1}{R + j\omega L}$$
$$= \frac{R - j\omega L}{R^2 + \omega^2 L^2}$$

Admittance of capacitor C is given by $Y_c = j\omega C$ Total admittance $Y = Y_l + Y_c$

$$=\frac{R}{R^2+\omega^2 L^2}-j\left[\frac{\omega L}{R^2+\omega^2 L^2}-\omega C\right]$$

 R^2

StudentBounty.com

DECL 2012

At resonance, .

$$\frac{\omega_0 L}{R_0^2 + \omega^2 L^2} - \omega_0 C = 0$$
$$R^2 + \omega_2^2 L^2 = \frac{L}{C}$$

Hence

$$\omega_0 = \sqrt{\frac{1}{LC} - \frac{R^2}{L^2}}$$
$$f_0 = \frac{1}{2\pi} \sqrt{\frac{1}{LC} - \frac{R^2}{L^2}}$$

$$f_0 = \frac{1}{2\pi} \sqrt{\frac{1}{LC}} \cdot \sqrt{1 - \frac{CR^2}{L}}$$

Considering the three elements, L, C and R in series, the Q_0 is $\frac{\omega_s L}{R}$ or $\frac{1}{\omega_s CR}$, where ω_s is the series resonant frequency in given by radians/sec.

Then
$$Q_0^2 = \frac{\omega_s L}{R} \cdot \frac{1}{\omega_s CR} = \frac{L}{CR^2}$$

Substituting Q_0^2 for $\frac{L}{CR^2}$, Eq. (22.63) yields,

$$f_0 = \frac{1}{2\pi} \sqrt{\frac{1}{LC}} \cdot \sqrt{1 - \frac{1}{Q_0^2}}$$

But the frequency of series resonance is given by,

$$f_s = \frac{1}{2\pi} \sqrt{\frac{1}{LC}}$$

$$f_0 = f_s \sqrt{1 - \frac{1}{Q_0^2}}$$

Henc

From Eq. we find that the frequency of parallel resonance f_0 differs from the frequency of series resonance fs. However, if Qo exceeds 10, then the factor

$$\sqrt{1-\frac{1}{Q_0^2}}\approx 1 \text{ and } f_0=f_s.$$

b. A series RLC circuit consists of resistance $R = 25 \Omega$, inductance L = 0.01 H and capacitance $C = 0.04 \mu F$. Calculate the frequency of resonance. If a 10 volts voltage of frequency equal to the frequency of resonance is applied to this

www.StudentBounty.com nework Help & Pastpapers

DECL

. .

2012

StudentBounty.com circuit, calculate the values of voltages V_C and V_L across C and L respectively. Find the frequencies at which these voltages V_C and V_L are maximum.

Solution:

$$f_{0} = \frac{1}{2\pi\sqrt{LC}}$$

= $\frac{1}{2\pi\sqrt{LC}}$
= $\frac{1}{2\pi\sqrt{0.01 \times 0.04 \times 10^{-6}}}$
= 7960 Hz.
 $f = f_{0},$
 $I = \frac{V}{R} = \frac{10 \text{ volts}}{25 \text{ ohms}} = 0.4 \text{ amp.}$
 $V_{l} = I.\omega_{0} L$
= $0.4 \times 2\pi \times 7960 \times 0.01 = 200 \text{ volts.}$
 $V_{0} = I \cdot \frac{1}{\omega_{0}C}$
= $\frac{0.4}{2\pi \times 7960 \times 0.04 \times 10^{-6}} = 200 \text{ volts}$

The frequency at which V_c is maximum, is given by

$$f_{c} = \frac{1}{2\pi} \sqrt{\frac{1}{LC} - \frac{R^{2}}{2L^{2}}}$$

$$= \frac{1}{2\pi} \sqrt{\frac{1}{0.01 \times 0.04 \times 10^{-6}} - \frac{(25^{2})}{2(0.01)^{2}}}$$

$$= 7958 \text{ Hz.}$$
The frequency at which V_{l} is maximum is given by,
$$f_{1} = \frac{1}{2\pi \sqrt{LC - \frac{C^{2}R^{2}}{2}}}$$

$$= \frac{1}{2\pi \sqrt{(0.01 \times 0.04 \times 10^{-6}) - \frac{(0.04 \times 10^{-6} \times 25)^{2}}{2}}}$$

$$= 7968 \text{ Hz.}$$

- **O7.** a.Explain various types of distortion in a transmission line. Obtain the condition for a distortion less transmission line.
- Ans7 a. Frequency distortion:

We have

$$\alpha = \sqrt{\frac{RG - \omega^2 LC + \sqrt{(RG - \omega^2 LC)^2 + \omega^2 (LG + RC)^2}}{2}}$$

Thus in general α is a function of frequency. Hence all frequencies transmitted on the line are not attenuated equally. When a complex signal containing

www.StudentBounty	.com
 Homework Help & Past 	papers

StudentBounty.com many frequencies (such as voice) is applied at the sending end then at the receiving end different frequencies are attenuated by different amount. Hence received waveform is not same as that of sending end one. This is known as "Frequency distortion".

DECL

2012

This distortion is very serious and undesirable for audio (voice) communication but does not affect video signal to much extent. This can be reduced by using eualizers at the line terminals.

(b) Phase (delay) distortion: Phase distortion is given by

$$\beta = \sqrt{\omega^2 L C - R G + \frac{\sqrt{(R G - \omega^2 L C)^2 + \omega^2 (L G + R C)^2}}{2}}$$

Thus β is a function of frequency. Hence the group velocity (v) = ω/β is also a function of the frequency. Hence all the frequencies applied at the input will not have same time of transmission (Because of different v) with some delayed more than others. Thus applied signal at the input will be different than that of received signal at the output. This phenomenon is called Delay (phase) distortion.

This distortion is less objectionable in voice or music transmission. But it is highly undesirable and objectionable in the picture (video) transmission.

Condition for no delay distortion:

For no delay condition the velocity of propogation should be independent of the frequency this condition can be obtained by

$$\beta = \sqrt{\omega^2 L C - R G + \frac{\sqrt{(R G - \omega^2 L C)^2 + \omega^2 (L G + R C)^2}}{2}}$$

If the term under inside square root reduces to $(R G + w^2 L C)^2$ then

$$\beta = \sqrt{\frac{\omega^2 L C - R G + R G + \omega^2 L C}{2}}.$$

StudentBounty.com Hence $\beta = \omega \sqrt{LC}$. Thus β is a direct function of the frequency. Thus distortion condition is obtained, when

$$(RG - \omega^{2}LC)^{2} + \omega^{2}(LG + RC)^{2} = (RG + \omega^{2}LC)^{2}$$

$$\Rightarrow R^{2}G^{2} + \omega^{4}L^{2}C^{2} - 2\omega^{2}RGLC + \omega^{2}L^{2}G^{2} + 2\omega^{2}LGRC + \omega^{2}R^{2}C^{2}$$

$$= R^{2}G^{2} + 2\omega^{2}LCRG + \omega^{4}LC$$

$$\Rightarrow \omega^{2}L^{2}G^{2} - 2\omega^{2}LCRG + \omega^{2}C^{2}R^{2} = 0$$

$$\Rightarrow (LG - RC)^{2} = 0$$

DECL

2012

Thus the condition is L G = RC. With this condition as shown before

=
$$\omega \sqrt{L C}$$
. Hence velocity of propation = $v = \frac{\omega}{\beta} = \frac{1}{\sqrt{L C}}$. Thus velocity is same

for all the frequencies when LG = RC. Thus Delay distortion is eliminated. (b) Condition for no frequency distortion :

We have α is dependent on the frequency. For α to be independent of frequency we must have no frequency term in the expression of α which is reproduced as below.

$$\alpha = \sqrt{\frac{1}{2} \left[\sqrt{(R^2 + \omega^2 L^2) (G^2 + \omega^2 C^2)} + (R G - \omega^2 L C) \right]}$$

If we make term under inner square root equal to $(RG + \omega^2 LC)^2$ then \sqrt{L} G which is independent of frequency. Thus distortion less condition is obtained $\alpha =$ when

$$(R^{2} + \omega^{2} L^{2}) (G^{2} + \omega^{2} C^{2}) = (R G + \omega^{2} L C)^{2}$$

$$\Rightarrow R^{2} G^{2} + \omega^{4} L^{2} C^{2} + \omega^{2} L^{2} G^{2} + \omega^{2} C^{2} R^{2}$$

$$= R^{2} G^{2} + 2 \omega^{2} R G L C + \omega^{4} L^{2} C^{2}$$

$$\Rightarrow L^{2} G^{2} + R^{2} C^{2} - 2 R G L C = 0$$

$$\Rightarrow (L G - R C)^{2} = 0$$

OR LG = RC

Thus under condition LG = RC, α is also independent of the frequency. Thus the condition

$$LG = RC$$
 $OR \frac{L}{C} = \frac{R}{G}$

b. The values of primary constants of an open wire line per loop kilometre are: R **Q7**. = 10 Ω , L = 3.5 mH, C = 0.008 μ F and G = 0.7 μ S. For signal frequency of 1000 Hz, calculate the characteristic impedance Z_0 , phase constant γ , attenuation constant α , phase shift constant β , wavelength λ and phase velocity V_P.

> www.StudentBounty.com iomework Help & Pastpapers

ß

DECL

2012

Hence and

Hence
$$\alpha = 0.0077$$
 neper/kilometre
 $\beta = 0.03395$ radian/kilometre
 $\lambda = \frac{2\pi}{\beta} = \frac{2\pi}{0.03395} = 185$ kilometres
Phase velocity
 $\omega = 2\pi \times 10^3$

$$v_p = \frac{\omega}{\beta} = \frac{2\pi \times 10^3}{0.03395} = 185,000$$
 kilometres/sec

Q8.

a. Explain how Quarter Wavelength ($\lambda/4$) line can be considered as a image transformer for impedance matching.

> For a length of a line (S) = $\frac{\lambda}{4}$, we have Input impedance

$$(Z_S) = \frac{V_S}{I_S} = R_0 \left[\frac{Z_R + J R_0 \tan \beta \frac{\lambda}{4}}{R_0 + J Z_R \tan \beta \frac{\lambda}{4}} \right]$$

www.StudentBounty	.com
 Homework Help & Pastp 	papers

DECL

2012

OR
$$Z_{S} = R_{0} \left[\frac{\frac{Z_{R}}{\tanh\left(\frac{2\pi\lambda}{4\lambda}\right)^{+} J R_{0}}}{\frac{R_{0}}{\tanh\left(\frac{2\pi\lambda}{4\lambda}\right)^{+} J Z_{R}}} \right]$$
 Because $\beta = \frac{2\pi}{\lambda}$
$$= R_{0} \left[\frac{\infty + J R R_{0}}{\infty + J Z_{R}} \right]$$
 Because $\tan \frac{\pi}{2} = \infty$

1 hus

$$Z_{\rm S} = \frac{0}{Z_{\rm R}}$$

but impedance of th

 R_{a}^{2}

he line is equal to square of \mathbf{R}_0 of the line divided by Thus ''inp load impedance (Z_R) " Thus $\frac{\lambda}{4}$ line can be considered as transformer to match a load impedance $(Z_R \text{ ohms})$ to a source of Z_s ohms. For such a matching characteristic impedance $\left(R_{0}^{1} \right)$ of the matching $f \frac{\lambda}{4}$ sections is to be equal to $\dot{R}_0 = \sqrt{Z_s \cdot Z_R}$

Thus "Characteristic impedance of line must be geometric mean of source and load impedance. Line can also be used a impedance inverter that can transform low impedance into high impedance and vice versa.

b. A lossless line carrying a signal of wavelength 10 metres has $R_0 = 300$ ohms. Load impedance is $Z_R = 100$ —j60 and the voltage measured across the load impedance is $E_R = 10$ volts. Calculate maximum and minimum values of voltage and current and also the distances of first maximum and first minimum from the load end terminals. Also determine the value of standing wave ratio.

Solution. Reflection coefficient

$$K = \frac{Z_R - R_0}{R_R + R_0}$$

= $\frac{100 - j60 - 300}{100 - j60 + 300} = 0.516 / 205.2^{\circ}$
= $-0.467 - j0.22$
 $\mathbf{E}_{R'} = \frac{\mathbf{E}_R}{1 + K} = \frac{10 / 0^{\circ}}{1 - 0.467 - j0.22} = 17.37 / 22.5^{\circ} \text{ volts.}$
 $\mathbf{I}_{R'} = \frac{\mathbf{E}_{R'}}{R_0} = \frac{17.37 / 22.5^{\circ}}{300 / 0^{\circ}} = 0.0579^{\circ} / 22.5^{\circ} \text{ amp.}$

The first voltage maximum occurs at,

$$y_{max} = \frac{\phi}{2\beta} = \frac{\phi \times \lambda}{2 \times 2\pi} = \frac{205.2^{\circ} \times 10}{2 \times 360^{\circ}} = 2.85 \text{ metres.}$$

www.StudentBounty.com

NETWORKS AND TRANSMISSION LINES

DECH 2012 DECH 200 DECH 200 DECH 2012 DECH 2012 DECH 2012 DECH 20 Successive voltage maxima occur at intervals of a half wavelength from y_{max} point. These voltage maximum points also correspond to current minimum points.

The first voltage minimum is spaced $\lambda/4$ from the first voltage maximum point. Hence its distance from the receiving end is given by,

$$\begin{aligned} y_{min} &= y_{max} + \frac{\hbar}{4} = 2.85 - 2.5 = 0.35 \text{ metre} \\ &\mid E_{max} \mid = \mid E_{R'} \mid (1 + \mid K \mid) = 17.37 \times 1.516 = 26.3 \text{ volts.} \\ &\mid E_{min} \mid = \mid E_{R'} \mid (1 - \mid K \mid) = 17.37 \times 0.484 = 8.4 \text{ volts.} \\ &\mid I_{max} \mid = \mid I_{R'} \mid (1 + \mid K \mid) = 0.0579 \times 1.516 = 0.0877 \text{ Amp.} \\ &\mid I_{min} \mid = \mid I_{R'} \mid (1 - \mid K \mid) = 0.0579 \times 0.484 = 0.028 \text{ Amp.} \\ &\mid S = \frac{\mid E_{max} \mid}{\mid E_{min} \mid} = \frac{26.3}{8.4} = 3.13. \end{aligned}$$

O9. a.Design m-derived T and π - sections low pass filters for nominal characteristic impedance $R_0 = 600$ ohms, cut-off frequency = 1800 Hz and infinite attenuation frequency $f_{\infty} = 2000$ Hz.

Solution.
$$m = \sqrt{1 - \left(\frac{f_c}{f_{\infty}}\right)}$$
$$= \sqrt{1 - \left(\frac{1800}{2000}\right)^2} = 0.436$$

For the prototype low pass filter for $f_c = 1800$ Hz and $R = 600 \Omega$, series arm inductance

$$= L \frac{R_0}{\pi f_c}$$
$$= \frac{600}{\pi \times 1800} \text{ H} = 106.2 \text{ mH}$$

DECL 2012

Shunt arm capacitance

TRANSMISSION LINES
itance

$$= L \frac{1}{\pi R_0 f_c}$$

$$= \frac{1}{\omega \times 600 \times 1800} F = 0.2948 \,\mu F.$$

The T-section of m-derived filter is shown in Fig. 23.17. The values of the elements are :

$$\frac{mL}{2} = \frac{0.436 \times 106.2}{2} \text{ mH}$$

= 23.15 mH.
 $C = 0.436 \times 0.2948 \,\mu\text{F}$
= 0.1285 μF
 $\frac{1-m^2}{4m}L = \frac{1-(0.436)^2}{4 \times 0.436} \times 106.2 \text{ mH}$
= 49.32 mH.
The π -section of *m*-derived filter is shown in Fig. 23.18.
The values of the elements are :
 $\frac{mC}{2} = \frac{0.436 \times 0.2948}{2} \,\mu\text{F}$
= 0.0642 μF
 $mL = 0.436 \times 106.2 \text{ mH}$
= 46.3 mH.
 $\frac{1-m^2}{4m}L = \frac{1-(0.436)^2}{4 \times 0.436} \times 0.2948 \,\mu\text{F}$

Explain and derive the design equations for Symmetrical Tb. attenuators.

 $= 0.1369 \,\mu F.$

Ans :

Symmetrical T- attenuators

Fig. 24.1 shows the symmetrical T-attenuator. It is driven at the input port by a voltage source V of internal resistance R_0 and it feeds a resistor R_0 at the output port.

An attenuator is designed for desired values of R_0 and attenuation. The elements R_1 and R_2 (Fig. 24.1) are then chosen such that these desired values of R_0 and attenuation are obtained.

Fig. 24.1. Symmetrical T-attenuator.

NETWORKS AND TRANSMISSION LINES

DECL

2012

StudentBounty.com The T-attenuator of Fig. 24.1 is a symmetrical T-network using resistances only. Hence $Z_0 = R_0$ and $\gamma = \alpha$. The elements R_1 and R_2 are then given by,

$$R_1 = R_0 \tanh \frac{\alpha}{2}$$
$$R_2 = R_0 / \sinh \frac{\alpha}{2}$$

and

But by definition of propagation constant γ ,

and

 $e^{\gamma} = \frac{I_S}{I_R}$ $\gamma = \alpha$ for resistance attenuator. $e^{\alpha} = \frac{I_S}{I_R} = N$

Hence Combining Eqs. (24.8) and (24.10), we get

 $R_1 = R_0 \cdot \tanh \frac{\alpha}{2}$ $= R_0 \frac{e^{\alpha/2} - e^{-\alpha/2}}{e^{\alpha/2} + e^{-\alpha/2}} = R_0 \frac{e^{\alpha} - 1}{e^{\alpha} + 1}$ $R_1 = R_0 \frac{N-1}{N+1}$

or

Similarly, $R_2 = \frac{R_0}{\sinh \alpha}$

$$=\frac{2R_0}{(e^{\alpha}-e^{-\alpha})}=\frac{2R_0}{N-\frac{1}{N}}$$

or

these constitute the design equations for the

symmetrical T-attenuator.

TEXTBOOKS

- Network Analysis; G. K. Mittal; 14th Edition (2007) 1. Khanna Publications; New Delhi
- 2. Transmission Lines and Networks; Umesh Sinha, 8th Edition (2003); Satya Prakashan, Incorporating Tech India **Publications, New Delhi**