Q. 2 a. Explain any one of the Basic Planner process used in IC fabrication

Ans: Page - 7 to 8 of Textbook-II

b. Explain Enhancement type MOSFET fabrication process.

Ans: Page - 28 to 29 of Textbook-II
Q. 3 a. Draw the h-parameter equivalent circuit of Common Collector Amplifier circuit and derive the expressions for input impedance, output impedance, voltage gain and current gain.

Ans: Page 155 to 157 of Textbook-I

b. Calculate the input impedance, output impedance and voltage gain for the circuit shown below; $R_{1}=39 \mathrm{~K} \mathrm{Ohm}, R_{\mathbf{z}}=47 \mathrm{~K} \Omega, R_{C}=1.8 \mathrm{~K} \Omega, R_{L}=68 \mathrm{~K} \Omega$ and $\boldsymbol{h}_{f e}=$ $80, h_{\text {oe }}=1.5 \mu \mathrm{~S}, \boldsymbol{h}_{\text {ie }}=1.2 \mathrm{~K} \Omega$.

Ans: Page 151 to 153 of Textbook-I

Q. 4 a. Explain, with a neat diagram, the working of n-channel JFET.

Ans: Page 221 to 223 of Textbook-I
b. For given IRF520

$\mathrm{V}_{\mathrm{DS}}(\max)$	I_{D} (max)	P_{D} (max)	r_{d} (on)
100 V	8 A	40 W	0.3Ω

g_{FS}	$\mathrm{V}_{\mathrm{GS}}(\mathrm{Th})$
$1.5 \mathrm{~S}(\min)$	$2 \mathrm{~V}(\min)$
2.9 S(typ)	$4 \mathrm{~V}(\max)$

Calculate the gate - source voltage required to produce a 7A drain current in an IRF520. Determine the drain source ON voltage and the device power dissipation at $I_{D}=7 \mathrm{~A}$.

Ans: Page 374 of Textbook-I

Q. 5 a. Explain with a diagram, the working of a Class B push pull power amplifier.

Ans: Page 523 to 524 of Textbook-I

b. Explain the complementary Emitter Follower Circuit.

Ans: Page 530 to 531 of Textbook-I

Q. 6 a. Write the characteristics of an ideal op-amp.

Ans: Page - 41 to 42 of Textbook-II

b. Derive an expression for the gain of an Inverting Amplifier using op-amp.

Ans: Page 43 of Textbook-II

Q. 7 a. Explain the working of a differentiator using an op-amp.

Ans: Page 164 to 167 of Textbook-II

b. Explain the working of the following circuits using op-amp.
(i) Voltage to Current Converter
(ii) Current to Voltage Converter

Ans: Page 146 to 147 of Textbook-II

Q. 8 a. Explain the working of monostable multivibrator using an op-amp.

Ans: Page 218 to 220 of Textbook-II

b. Explain the working of an astable multivibrator using an op-amp and derive the expression for frequency of output wave.

Ans: Page 318 to 320 of Textbook-II
Q. 9 a. Explain the working of a Series Op-Amp Regulator.

Ans: Page 240 to 241 of Textbook-II
b. Explain the working of Successive Approximation Type ADC.

Ans: Page 361 to 363 of Textbook-II

Textbooks

I. Electronic devices and Circuits by David A Bell (3 ${ }^{\text {rd }}$ Edition)
II. Linear Integrated Circuits by D.Roy Choudhary and Shail B. Jain (4 ${ }^{\text {th }}$ Edition)

