Code: DE56

Subject: ANALOG ELECTRONIC

ROLL NO.

Diplete – Et

Time: 3 Hours

DECEMBER 2012

ONIC THE OUTPUT COM

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

a. The process used to produce a metal thin film layer that will serve to make interconnections of the various components on the chip is

(A) Metallization	(B) Dielectric Isolation
(C) Ion Implantation	(D) Diffusion

b. Which of the following circuit is known as the emitter follower

(A) CB amplifier	(B) CC amplifier
(C) CE amplifier	(D) CS amplifier

c. Which of the following amplifier suffer from the cross over distortion?

(A) Class B amplifier	(B) Class A amplifier
(C) Class AB amplifier	(D) Class C amplifier

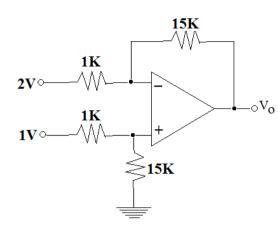
d. The typical value of forward voltage drop for an LED is

(A) 0.7 Volts	(B) 0.3 Volts
(C) 2.6 Volts	(D) 1.2 Volts

e. The ideal value of slew rate for an op-amp is

(A) Zero	(B) Infinite
(C) Low	(D) Medium

f. The output voltage in the circuit shown below is


(A) 15 V	(B) 10 V
(C) - 15 V	(D) -10 V

DE56 / DECEMBER - 2012

Code: DE56

StudentBounty.com Subject: ANALOG ELECTRONIC

ROLL NO.

g. The frequency of oscillation of a Wien Bridge Oscillator using op-amp with R=10 K Ohm and C= 0.01μ F is

(A) 1674.46 Hz	(B) 1592.35 Hz
(C) 1289.4 Hz	(D) 1952 Hz

h. The output frequency of an astable multivibrator using 555 timer IC is available at

(A) Pin 3	(B) Pin 2
(C) Pin 4	(D) Pin 6

i. For a FET $I_{DSS} = 16 \text{ mA}$, $V_p = -8 \text{ V}$. The value of transconductance (g_m) for $V_{GS} = -4V$ is

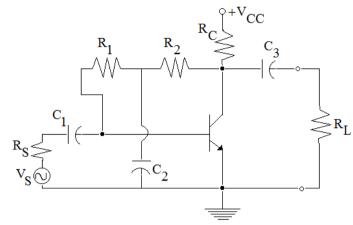
(A) 3500 μS	(B) 2500 μS
(C) 2000 µS	(D) 1500 μS

j. The number of op-amps required for a 3 bit output simultaneous converter type ADC is

(A) 7	(B) 5
(C) 3	(D) 15

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- Q.2 a. Explain any one of Basic Planar process used in IC fabrication. (8)
 - b. Explain Enhancement type MOSFET fabrication process. (8)
- a. Draw the h-parameter equivalent circuit of Common Collector Amplifier Q.3 circuit and derive the expressions for input impedance, output impedance, voltage gain and current gain. (10)


DE56 / DECEMBER - 2012

Code: DE56

Subject: ANALOG ELECTRONIC

ROLL NO.

StudentBounty.com b. Calculate the input impedance, output impedance and voltage gain for circuit shown below; $R_1 = 39 \text{ K}\Omega$, $R_2 = 47 \text{ K}\Omega$, $R_c = 1.8 \text{ K}\Omega$, $R_L = 68 \text{ K}\Omega$ and $h_{fe} = 80, h_{oe} = 1.5 \ \mu S, h_{ie} = 1.2 \ K\Omega.$

- **Q.4** a. Explain with a neat diagram, the working of n-channel JFET.
 - b. For given IRF520

V _{DS} (max)	I _D (max)	$P_{\rm D}({\rm max})$	r _d (on)
100V	8A	40W	0.3 Ω

g _{FS}	V _{GS} (Th)
1.5S(min)	2V(min)
2.9 S(typ)	4V(max)

Calculate the gate – source voltage required to produce a 7A drain current in an IRF520. Determine the drain source ON voltage and the device power dissipation at $I_D = 7A$. (8)

a. Explain with a diagram, the working of a Class B push pull power amplifier. Q.5

			(8)
	b.	Explain the complementary Emitter Follower Circuit.	(8)
Q.6	a.	Write the characteristics of an ideal op-amp.	(4)
	b.	Derive an expression for the gain of an Inverting Amplifier using op-amp.	(5)
	c.	Explain the term Slew Rate and obtain an expression for maximum freque in terms of slew rate.	ency (7)
Q.7	a.	Explain the working of a differentiator using an op-amp.	(8)
	b.	Explain the working of the following circuits using op-amp.(i) Voltage to Current Converter(ii) Current to Voltage Converter	(8)

(8)

C	ode	e: DE56 Subject: ANALOG ELECTRONIC	ente
Q.8	a.	Explain the working of monostable multivibrator using an op-amp.	a ling
	b.	Explain the working of an astable multivibrator using an op-amp and of the expression for frequency of output wave.	derive (8)
Q.9	a.	Explain the working of a Series Op-Amp Regulator.	(7)
	b.	Explain the working of Successive Approximation Type ADC.	(9)