DipIETE - ET/CS

Time: 3 Hours

DECEMBER 2012

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q. 1 Choose the correct or the best alternative in the following:

a. The value of the $\lim _{x \rightarrow 0} \frac{\tan x-\sin x}{x^{3}}$ is
(A) 0
(B) $\frac{1}{2}$
(C) 2
(D) None of these
b. If $f(x)=\frac{\tan x+\sec x-1}{\tan x-\sec x+1}$, then $f^{\prime}(x)$ is equal to
(A) $\sec x(\tan x-\sec x)$
(B) $\sec x(\sec x-\tan x)$
(C) $\sec x(\sec x+\tan x)$
(D) None of these
c. If $z=4+i \sqrt{7}$, then value of $z^{3}-4 z^{2}-9 z+91$ is equal to
(A) 0
(B) 1
(C) -1
(D) 2
d. If $-\pi<\arg (\mathrm{z})<-\frac{\pi}{2}$, then $\arg \bar{z}-\arg (-\overline{\mathrm{z}})$ is
(A) π
(B) $-\pi$
(C) $\frac{\pi}{2}$
(D) $-\frac{\pi}{4}$
e. If $\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}}=0$, and $|\overrightarrow{\mathrm{a}}|=3,|\overrightarrow{\mathrm{~b}}|=5,|\overrightarrow{\mathrm{c}}|=7$, then the angle between $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$ is equal to
(A) 0
(B) 30°
(C) 60°
(D) 90°
f. If $\mathrm{I}=\int_{0}^{\pi / 2} \cos ^{\mathrm{n}} \mathrm{x} \sin ^{\mathrm{n}} \mathrm{xdx}=\lambda \int_{0}^{\pi / 2} \sin ^{\mathrm{n}} \mathrm{xdx}$ then λ equal to
(A) 2^{-n+1}
(B) $2^{\mathrm{n}-1}$
(C) 2^{-n}
(D) 2^{-1}
g. The solution of $\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+4 y=0$ is
(A) $y=\left(C_{1}+C_{2} x\right) e^{-2 x}$
(B) $y=\left(C_{1}+C_{2} x\right) e^{2 x}$
(C) $y=\left(C_{1}+C_{2}\right) e^{-2 x}$
(D) $y=\left(C_{1}+C_{2}\right) e^{2 x}$
h. The period of the function of $|\sin x|$ is equal to
(A) 2π
(B) π
(C) 3π
(D) 4π
i. $\mathrm{L}\{\mathrm{t} \sinh$ at $\}$ is equal to
(A) $\frac{2 a s}{\left(s^{2}-a^{2}\right)^{2}}$
(B) $\frac{\mathrm{as}}{\mathrm{s}^{2}+\mathrm{a}^{2}}$
(C) $\frac{a s}{s^{2}-a^{2}}$
(D) $\frac{2 a s}{\left(s^{2}+a^{2}\right)^{2}}$
j. $\quad L^{-1}\left\{\frac{4 s-3}{s^{2}+9}\right\}$ is equal
(A) $3 \cos t+4 \sin 3 t$
(B) $3 \cos 4 t-4 \sin 3 t$
(C) $4 \cos 3 t+3 \sin t$
(D) $4 \cos 3 t-\sin 3 t$

Answer any FIVE Questions out of EIGHT Questions.
 Each question carries 16 marks.

1

Q. 2 a. Evaluate $\lim _{x \rightarrow 0} \frac{(1+\mathrm{x})^{\bar{x}}-e}{\mathrm{x}}$ in the form of indeterminate.
b. Use Taylor's theorem, expand e^{x} in power of $(\mathrm{x}+3)$.
Q. 3 a. Show that the length of one loop of the curve $3 a y^{2}=x(x-a)^{2}$ is $\frac{4 a}{\sqrt{3}}$
b. Find the length of the arc from $\theta=0$ to $\theta=2 \pi$ of the curve $\mathrm{x}=\mathrm{a}(\cos \theta+\theta \sin \theta), \mathrm{y}=\mathrm{a}(\sin \theta-\theta \cos \theta)$
Q. 4 a. Prove that, $(1+\cos \theta+i \sin \theta)^{n}+(1+\cos \theta-i \sin \theta)^{n}=2^{n+1} \cdot \cos ^{n} \frac{\theta}{2} \cdot \cos \frac{n \theta}{2}$, wher n is an integer
b. The impedance of each of the following circuit at frequency of 50 cycles. Calculate (i) A resistance of 20 ohms in series with an inductance of 0.1 H . (ii) A resistance of 50 ohms in series with a capacitance of $40 \mu \mathrm{~F}$. If the terminal voltage is 230 volts, find the value of current in each case and phase of each current relative to applied voltage.
Q. 5 a. A rigid body is rotating at the rate 2.5 radians per second about an axis $A B$, where A and B are the points $(1,-2,1)$ and $(3,-4,2)$. Find the velocity of the point P at $(5,-1,-1)$ of the body.
b. A force of 78 gram act at the point $(2,3,5)$, the direction cosines of its line of acting being as $(2,2,1)$. Find the magnitude of its moment about the line joining the origin to the point $(12,3,4)$.
Q. 6 a. Solve the differential equation $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=x \sin x$
b. A condenser of capacity C is discharge through the inductance L and a resistance R in series and the charge q at any time t satisfies the equation
$\mathrm{L} \frac{\mathrm{d}^{2} \mathrm{q}}{\mathrm{dt}^{2}}+\mathrm{R} \frac{\mathrm{dq}}{\mathrm{dt}}+\frac{\mathrm{q}}{\mathrm{c}}=0$
Given that $\mathrm{L}=0.25$ henery, $\mathrm{R}=250$ ohms, $\mathrm{C}=2 \times 10^{-6}$ farad and that when $\mathrm{t}=0$, the charge q is 0.002 coulombs and the current $\frac{\mathrm{dq}}{\mathrm{dt}}=0$, obtain the value of q in terms of t .
Q. 7 a. Find the fourier series representing $f(x)=x, 0<x<2 \pi$
b. Obtain half range sine for e^{x} in $0<\mathrm{x}<1$
Q. 8 a. Find the Laplace transform of $\sin 2 t \cdot \cos 3 t+\cos (a t+5)$.
b. Find the Laplace transform of $\mathrm{t}^{2} \sin 2 \mathrm{t}$.
Q. 9 a. Find $L^{-1}\left[\frac{3 s+7}{s^{2}-2 s-3}\right]$
(8)
b. Using Laplace transform, solve the equation

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+9 x=\cos 2 t ; \text { if } x^{\prime}(0)=1, x\left(\frac{\pi}{2}\right)=-1 \tag{8}
\end{equation*}
$$

