Code: DE51/DC51 Subject: ENGINEERING MATHEMA

DipIETE - ET/CS

Time: 3 Hours

DECEMBER 2012

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. $\underset{\theta \rightarrow 0}{\operatorname{Lt}} \frac{1-\cos m \theta}{1-\cos n \theta}$ is equal to
(A) $m^{2} n^{2}$
(B) $\frac{\mathrm{m}}{\mathrm{n}}$
(C) $\frac{m^{2}}{n^{2}}$
(D) $m^{2}-n^{2}$
b. If $y=e^{\tan x}$ then $\frac{d y}{d x}$ is equal to
(A) $e^{\left(\sec x \cdot \tan ^{2} x\right)}$
(B) $\mathrm{e}^{(\tan \mathrm{x})} \cdot \sec ^{2} \mathrm{x}$
(C) $\mathrm{e}^{(\tan x \cdot \sec x)}$
(D) $e^{(\sec x)} \cdot \tan ^{2} x$
c. $\int \tan ^{2} x . d x$ is equal to
(A) $\tan x$
(B) $\tan x \cdot \sec x$
(C) $\tan ^{2} x$
(D) $\tan x-x$
d. If $\left[\begin{array}{cc}x+3 & 2 y+x \\ z-1 & 4 a-6\end{array}\right]=\left[\begin{array}{cc}0 & -7 \\ 3 & +2 a\end{array}\right]$, then x, y, z and a is equal to
(A) $\mathrm{x}=-3, \mathrm{y}=-2, \mathrm{z}=4, \mathrm{a}=3$
(B) $\mathrm{x}=2, \mathrm{y}=-3, \mathrm{z}=4, \mathrm{a}=2$
(C) $x=1, y=2, z=3, a=4$
(D) $\mathrm{x}=3, \mathrm{y}=2, \mathrm{z}=-4, \mathrm{a}=-3$

Code: DE51/DC51
 Subject: ENGINEERING MATHEMA

e. If $\Delta=\left|\begin{array}{ccc}2 x-1 & x+7 & x+4 \\ x & 6 & 2 \\ x-1 & x+1 & 3\end{array}\right|=0$, then x is equal to
(A) $4,5,6$
(B) 1, 2, 3
(C) $1,-2,3$
(D) $-4,-7,2$
f. The $5^{\text {th }}$ term in the expansion of $\left(\frac{4 \mathrm{x}}{5}-\frac{5}{2 \mathrm{x}}\right)^{8}$ is equal to
(A) 1210
(B) 1020
(C) 1120
(D) 1220
g. The solution of the differential equation $\frac{d y}{d x}=e^{x-y}+x^{2} e^{-y}$ is equal to
(A) $\mathrm{e}^{-\mathrm{y}}=\mathrm{e}^{\mathrm{x}}+\frac{\mathrm{x}^{2}}{2}+c$
(B) $y=e^{x}+\frac{x^{3}}{3}+c$
(C) $y=e^{-x}+\frac{x^{2}}{2}+c$
(D) $\mathrm{e}^{\mathrm{y}}=\mathrm{e}^{\mathrm{x}}+\frac{\mathrm{x}^{3}}{3}+c$
h. If $\frac{\tan 69^{\circ}+\tan 66^{\circ}}{1-\tan 69^{\circ} \cdot \tan 66^{\circ}}=x$, then x is equal to
(A) $1 / 2$
(B) -1
(C) 1
(D) $\sqrt{3}$
i. The area of the quadrilateral whose vertices, taken in order, are $(1,2),(6,2),(5,3)$ and $(3,4)$ is equal to
(A) $\frac{15}{3}$ sq units
(B) $\frac{5}{2}$ sq units
(C) $\frac{11}{2}$ sq units
(D) $\frac{12}{3}$ sq units
j. The equation of the circle whose area is 154 sq. units and having $2 x-3 y+12=0$ and $x+4 y-5=0$ as diameters, is given by
(A) $x^{2}+y^{2}-6 x+4 y-36=0$
(B) $x^{2}-y^{2}+6 x-4 y-36=0$
(C) $x^{2}+y^{2}+6 x-4 y-36=0$
(D) $x^{2}+y^{2}-6 x-4 y+36=0$

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q. 2 a. If $y=X^{X^{X} \ldots \ldots \ldots \ldots \ldots \ldots \infty}$, then prove that $X \frac{d y}{d X}=\frac{y^{2}}{\left(1-y \log _{e} X\right)}$
b. Find the equation of the tangent to the curve $x^{2}+2 y=8$ which is perpendicu to the line $x-2 y+1=0$.
Q. 3 a. Evaluate $\int \mathrm{e}^{-\mathrm{x}} \cdot \cos \mathrm{xdx}$
b. Evaluate $\int_{1}^{2} \frac{1}{\mathrm{x}\left(1+\mathrm{x}^{2}\right)} \mathrm{dx}$
Q. 4 a. Find the matrix A satisfying the equation $\left[\begin{array}{ll}2 & 1 \\ 3 & 3\end{array}\right] A\left[\begin{array}{ll}5 & 3 \\ 3 & 2\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
b. Solve the following set of equations by using Cramer's rule

$$
\begin{equation*}
2 x-y+3 z=9, x+y+z=6, x-y+z=2 \tag{8}
\end{equation*}
$$

Q. 5 a. Solve $x^{2} d y+y(x+y) d x=0$
b. Solve $\left(1+y^{2}\right) d x+x d y=\tan ^{-1} y d y$
Q. 6 a. Prove that the coefficient of x^{r} in the expansion of $(1-4 x)^{-1 / 2}$ is $\frac{(2 r)!}{(r!)^{2}}$
b. Find three number in A.P. whose sum is 21 and their product is 315 .
Q. 7 a. If A, B, C are the angles of a triangle, then prove that, $\tan 2 \mathrm{~A}+\tan 2 \mathrm{~B}+\tan 2 \mathrm{C}$ $=\tan 2 A \cdot \tan 2 B \cdot \tan 2 \mathrm{C}$
b. Prove that, $\sin 10^{\circ} \cdot \sin 50^{\circ} \cdot \sin 60^{\circ} \cdot \sin 70^{\circ}=\frac{\sqrt{3}}{16}$
Q. 8 a. Find the equation of the straight lines through the point $(2,-1)$ and making an angle of 45° with the line $6 x+5 y-1=0$.
b. Find the equation of lines parallel to $3 x-4 y-5=0$ at a unit distance from it.
Q. 9 a. Find the equation of the circle which passes through the points $(3,-2),(-2,0)$ and having its centre on the line $2 x-y-3=0$
b. Find the vertex, focus directrix, latus-rectum and axis of parabola $3 x^{2}+12 x-8 y=0$.

