Code: AE77/AC77

Subject: DIGITAL SIGNAL PROCES

ROLL NO.

AMIETE - ET/CS

Time: 3 Hours

DECEMBER 2012

StudentBounty.com PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Ouestions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Choose the correct or the best alternative in the following: **Q.1**

 (2×10)

a. Down sampling by Lowpass filtering followed by compression is termed as

(A) Interpolation	(B) Aliasing
(C) Decimation	(D) None of these

b. The relationship between the quantized signal level and the full scale level of the A/D converter

$(\mathbf{A}) \Delta = (\mathbf{X}_{\mathrm{m}})/2^{\mathrm{B}}$	$(\mathbf{B}) \Delta = (2 X_m)/2^B$
$(\mathbf{C}) \Delta = (\mathbf{X}_{\mathrm{m}})/2^{\mathrm{B}+1}$	$(\mathbf{D}) \Delta = (4 X_m)/2^B$

c. Canonical form of structure is

(A) Direct Form I	(B) Direct Form II
(C) Both (A) & (B)	(D) None of these

d. If the continuous time system has poles only in the left half of the s-plane then the discrete time filter must have poles _____

(A) Outside the unit circle only	(B) Inside the unit circle only
(C) Anywhere on z plane	(D) 2< Z <3

e. The DFT values are equal to samples of Z transform and are at equally spaced points _____

(B) jω

(D) -1

(**B**) Inside the unit circle

(**D**) On entire z plane

- (A) Outside the unit circle (C) On the unit circle
- f. $W_N^{N/2}$ is equal to **(A)** 1 (**C**) - jω

AE77/AC77 / DECEMBER - 2012

AMIETE - ET/CS

www.StudentBounty.com omework Help & P

1

Code: AE77/AC77

Subject: DIGITAL SIGNAL PROCES

ROLL NO.

g. Since Z Transform are analytic functions inside their ROC it means that

(A) They have well defined derivative at every point inside the ROC

StudentBounty.com (B) Z - Transform and all its derivatives are continuous functions within ROC

- (C) Both (A) & (B)
- (D) None of these
- h. Relationships between real and imaginary parts of Z Transform on a closed contour within ROC is referred to as
 - (A) Poisson's formula in mathematical literature
 - (B) Hilbert Transform relations in system theory
 - (C) None of these
 - (**D**) Both (**A**) & (**B**)

i. Effect of windowing on a signal's spectrum can be.

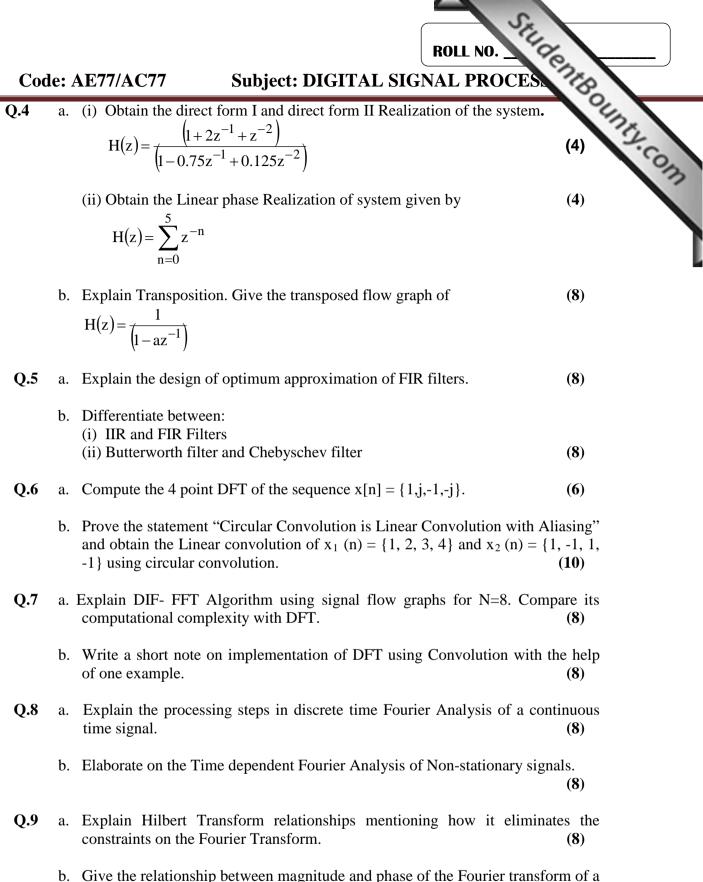
(A)	Reduced Resolution	(B) Leakage
(C)	Both (A) & (B)	(D) None of these

j. Out of all the windows available, the one which has the narrowest mainlobe for a given length is

(A) Kaiser window (**C**) Hamming window (B) Rectangular window

(**D**) Hanning window

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.


- 0.2 a. Explain discrete time processing of continuous time signals. (8)
 - b. Derive the Frequency domain relationship between the input and output of an ideal Continuous to Discrete (C/D) Converter and assist it with spectrum diagrams. (8)
- a. Consider the LTI system with input x [n] and output y [n] are related through the 0.3 difference equation.

$$y[n] + \frac{1}{4} y[n-1] = x[n] + \frac{1}{2} x[n-1]$$

- Find the system function and its ROC (i) (4)
- Draw its pole-zero plot (ii)
- Comment on the causality and stability of this system (iii) (2)
- b. Explain Allpass systems. Obtain its frequency response and discuss the applications of Allpass system. (8)

(2)

2

b. Give the relationship between magnitude and phase of the Fourier transform of a sequence. (8)

3