AMIETE - ET

Time: 3 Hours
PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. Which of them is a non linear device?
(A) Capacitor
(B) Inductor
(C) Transistor
(D) All of these
b. At time $\mathrm{t}=0$, if the switching of source is done, then an initially relaxed capacitor behaves as a
(A) Short circuit
(B) Open circuit
(C) Voltage source
(D) Current source
c. If a function $f(t)$ is shifted by ' T ', then is correctly represented as
(A) $f(t-T) U(t)$
(B) $f(t) U(t-T)$
(C) $\mathrm{f}(\mathrm{t}-\mathrm{T}) \mathrm{U}(\mathrm{t}-\mathrm{T})$
(D) $f(t-T)(t-T)$
d. Laplace transform of function $\mathrm{e}^{-2 \mathrm{t}} \sin 2 \mathrm{t}$ is
(A) $2 /\left(s^{2}+2 s+8\right)$
(B) $4 /\left(s^{2}+2 s+8\right)$
(C) $2 /\left(s^{2}+4\right)$
(D) $4 /\left(\mathrm{s}^{2}+4\right)$
e. Nortons theorem is valid for
(A) Linear loads only
(B) bilateral loads only
(C) Nonlinear loads only
(D) all types of load
f. A lattice with $\mathrm{Z}_{\mathrm{a}}=2 \mathrm{~s}$ and $\mathrm{Z}_{\mathrm{b}}=2 / \mathrm{s}$ is terminated in a load $\mathrm{R}_{\mathrm{L}}=2$. Then input impedance is
(A) An inductor of value 2 H
(B) A capacitor of value $1 / 2 \mathrm{~F}$
(C) A resistor of value 2 ohms
(D) A resistor of value $1 / 2$ ohms
g. Use CG:GC transformation to obtain the element values of an LP filter gi the values for the HP filter as $\mathrm{C}=2 \mathrm{~F}$ and $\mathrm{R}=2.5 \Omega$. R^{\prime} and C^{\prime} in LP filter have respectively values
(A) $\frac{1}{2.5} \Omega, 1 / 2 \mathrm{~F}$
(B) $2 \Omega, \frac{1}{2.5} \mathrm{~F}$
(C) $2 \Omega, 2.5 \mathrm{~F}$
(D) $\frac{1}{2} \Omega, \frac{1}{2.5} \mathrm{~F}$
h. Given $Z(s)=(s+2) /(s+1)(s+3)$. The number of elements in a canonical realization is
(A) 2
(B) 3
(C) 4
(D) 5
i. In a series RLC circuit, the maximum voltage across the capacitor occurs at a frequency
(A) Equal to resonant frequency
(B) Greater than resonant frequency
(C) Smaller than resonant frequency
(D) Both (A) and (B)
j. The h parameter of two port network can be obtained by setting
(A) $\mathrm{I}_{1}=0$ or $\mathrm{V}_{2}=0$
(B) $\mathrm{I}_{1}=1 \mathrm{~A}$ or $\mathrm{V}_{2}=0$
(C) $\mathrm{I}_{1}=0$ or $\mathrm{V}_{2}=1 \mathrm{~V}$
(D) All of these

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q. 2 a. For the circuit shown in Fig.1, determine the equivalent voltage source and equivalent current source across the terminal ' a ' and ' b '

Fig. 1
b. Express the node voltage V in Fig. 2 as a function of time if $R=1 / 2 \Omega$. Given that the initial voltage across the capacitor (C) is +10 V and there is no initial current through the inductor (L).
(8)

Fig. 2
Q. 3 a. Fig. 3 shows a two loop network. Assuming that prior to closing of switch K $\mathrm{t}=0$) there was no voltage across the capacitor nor any current through th inductor. Find $\frac{\mathrm{di}_{1}}{\mathrm{dt}}\left(\mathrm{t}=0^{+}\right), \frac{\mathrm{di}_{2}}{\mathrm{dt}}\left(\mathrm{t}=0^{+}\right), \frac{\mathrm{d}^{2} \mathrm{i}_{1}}{\mathrm{dt}^{2}}\left(\mathrm{t}=0^{+}\right)$and $\frac{\mathrm{d}^{2} \mathrm{i}_{2}}{\mathrm{dt}^{2}}\left(\mathrm{t}=0^{+}\right)$

Fig. 3
b. In the given network, the switch K is opened at $t=0$. At $t=0^{+}$, solve the values of $V, \frac{d V}{d t}$ and $\frac{d^{2} V}{d t^{2}}$, if $I=10 A, R=1000 \Omega$ and $C=1 \mu F$ (Fig. 4)

Fig. 4
Q. 4 a. At $\mathrm{t}=0$, a switch is closed, connecting a voltage source $\mathrm{V}=\mathrm{V}_{\mathrm{m}} \sin \omega \mathrm{t}$ to a series RL circuit. Find the expression for current by using method of Laplace transform.
b. For the circuit as shown in Fig. 5 obtain the value of transfer function $H(s)$ and impulse response $h(t)$ if the output is taken as voltage across the capacitor. (8)

Fig. 5
Q. 5 a. State and explain Norton's theorem. Obtain the Thevenin's equivalent of circuit shown in Fig.6.
b. State and prove Superposition theorem.

Q. 6 a. Define Y and h parameters of a two-port. Hence obtain the relations between them.
b. For the circuit as shown in Fig.7, find the Z-parameters.

Fig. 7
Q. 7 a. Write the properties of positive real functions.
b. For the given polynomial $P(S)=S^{6}+3 S^{5}+4 S^{4}+6 S^{3}+13 S^{2}+27 S+18$, determine the number of zeros lying in the right half of S-plane, left half of S-plane and on the imaginary axis of S-plane.
(8)
Q. 8 a. Given $F(S)=\frac{6(S+2)(S+4)}{S(S+3)}$, find the continued function expression and hence synthesise the network for the case when $\mathrm{F}(\mathrm{S})$ is an impedance $\mathrm{Z}(\mathrm{S})$.
b. Given Real $\left[Z_{d}(j \omega)\right]=\frac{18 \omega^{2}+48}{\omega^{4}+17 \omega^{2}+16}$. Obtain $Z_{d}(S)$. Show that $Z_{d}(S)$ is RC impedance and realize it in Cauer form.
Q. 9 a. Design a low pass T and π section filter having a design $R_{0}=600$ ohm and cutoff frequency $=2000 \mathrm{~Hz}$.
b. Synthesize the function given below with a 1 ohm termination $Z_{21}(s)=\frac{2}{s^{3}+3 s^{2}+4 s+2}$.

