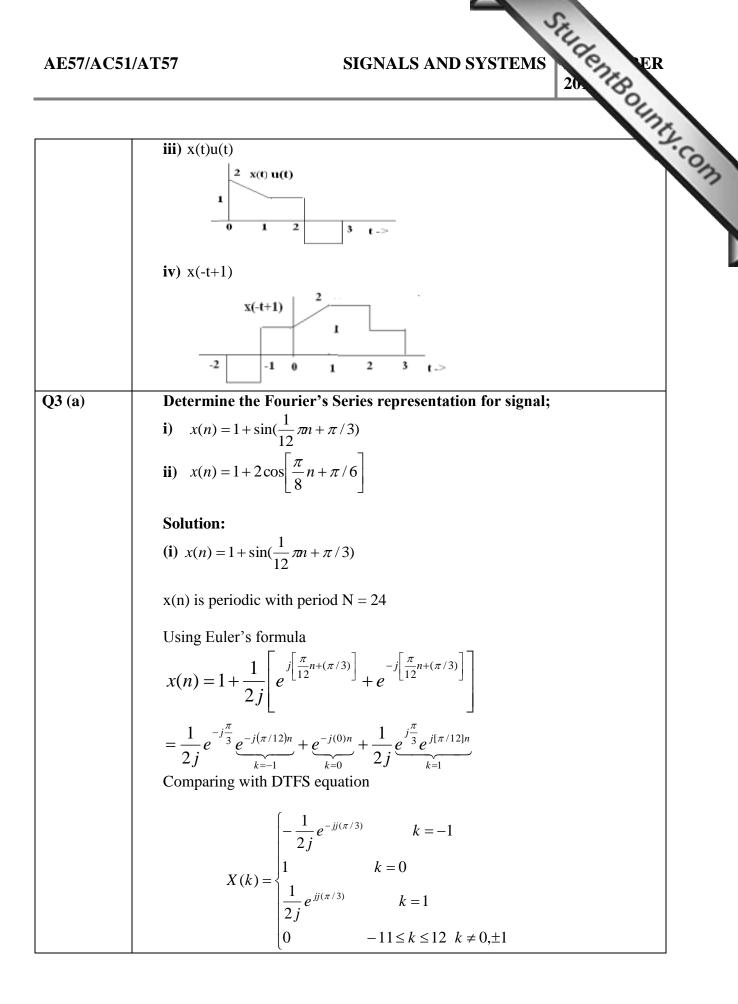
	STILL	
AE57/AC	251/AT57 SIGNALS AND SYSTEMS 20 ER	
	JUNT	
Q2 (a).	251/AT57 SIGNALS AND SYSTEMS 20 Determine power and energy of the following signals (i) $x(t) = e^{j\omega_0 t} - \infty < t < \infty$ (ii) $x(t) = A \cos(\omega t)$	OTT
	(iii) $\mathbf{x}(\mathbf{n})=\mathbf{u}(\mathbf{n})$	
	Solution: (i) $x(t) = e^{jw_0 t} -\infty < t < \infty$ $I = \int_{-T}^{T} x(t) ^2 dt$	
	$\begin{aligned} I &= \int_{-T} x(t) dt \\ x(t) &= \left e^{jw_0 t} \right = 1 \\ &= \int_{-T}^{T} x(t) ^2 dt = \int_{-T}^{T} 1 dt = 2T \end{aligned}$	
	$E = \lim_{T \to \infty} [I] = \infty$	
	$P = \lim_{T \to \infty} \left[\frac{I}{2T} \right] = 1$	
	Power is finite, it is a power signal	
	(ii) $x(t) = A \cos(wt)$ $I = \int_{T} x(t) ^2 dt$	
	$= \int_{T}^{T} \cos^{2} wt dt$ = $\int_{T} \frac{(1 + \cos 2wt)}{2} dt = \int_{T} \frac{1}{2} dt + \frac{1}{2} \int_{T} \cos 2wt dt$	
	=T/2	
	$E = \lim_{T \to \infty} [I] = \infty$ $P = \lim_{T \to \infty} [\frac{I}{T}] = \frac{1}{2}$	
	Power is finite, it is a power signal	

AE57/AC51	/AT57 SIGNALS AND SYSTEMS (iii) $x(n) = u(n)$ $I = \sum_{n=1}^{N} x(n) ^2$
Q2 (b)	(iii) $x(n) = u(n)$ $I = \sum_{n=-N}^{N} x(n) ^{2}$ $I = \sum_{n\to\infty}^{N} I ^{2} = [2N + 1]$ $E = \lim_{N\to\infty} I = \infty$ $P = \lim_{N\to\infty} \frac{[I]}{2N + 1} = 1$ Power is finite, it is a power signal Given x(t) as shown in Fig.3 Sketch the following (i) x(-2t) (ii) x(t-3) (iii) x(t)u(t) (iv) x(-t+1) Fig.3 Solution: i) x(-2t) $\frac{x(2t)^{2}}{1 - \frac{1}{1 - \frac{1}{2}}} = \frac{1}{1 - \frac{1}{2}}$ ii) x(1-3) (ii) x(1-3) (iii)

SIGNALS AND SYSTEMS



AE57/AC	C51/AT57 SIGNALS AND SYSTEMS (ii) $x(n) = 1 + 2\cos\left[\frac{\pi}{8}n + \pi/6\right]$
	20. TBOULD
	(ii) $x(n) = 1 + 2\cos\left[\frac{\pi}{8}n + \pi/6\right]$
	x(n) is periodic with period $N = 16$
	Using Euler's formula
	$x(n) = 1 + \left[e^{j \left[\frac{\pi}{8} n + (\pi/6) \right]} + e^{-j \left[\frac{\pi}{8} n + (\pi/6) \right]} \right]$
	$= e^{-j\frac{\pi}{8}} \underbrace{e^{-j(\pi/6)n}}_{k=-1} + \underbrace{e^{-j(0)n}}_{k=0} + \underbrace{e^{j\frac{\pi}{8}} e^{j[\pi/6]n}}_{k=1}$
	Comparing with DTFS equation $X(k) = \begin{cases} e^{-jj(\pi/6)} & k = -1 \\ 1 & k = 0 \\ e^{jj(\pi/6)} & k = 1 \\ 0 & -7 \le k \le 8 \ k \ne 0, \pm 1 \end{cases}$
	$ \begin{array}{c} X(k) = \begin{cases} e^{jj(\pi/6)} & k = 1 \\ 0 & -7 \le k \le 8 \ k \ne 0, \pm 1 \end{array} \end{array} $
Q3 (b)	State and prove the following Fourier series properties of continuous
	periodic signals. (i) Frequency shift property (ii) Scaling property
	Solution:
	(i) Frequency shift Property
	Table 3.1. Page No. 206 of Text Book - I
	(ii) Scaling property
	If x(t) is a periodic signal then f(t)=x(at) is also periodic. If x(t) has fundamental period T then f(t) has fundamental period T/a If $x(t) \leftrightarrow X[k]$ then
	$x(at) \leftrightarrow X[k]$
	I.e Fourier series coefficients of $x(t)$ and $x(at)$ are identical
	Proof: since f9t) has fundamental period T/a

	AT57 SIGNALS AND SYSTEMS $F[k] = \frac{a}{T} \int_{\frac{T}{a}} f(t)e^{-jkw_0 t} dt$ The second	
AE57/AC51/A	AT57 SIGNALS AND SYSTEMS 20 ER	
	Sun	E
	$F[k] = \frac{a}{T} \int_{\frac{T}{a}} f(t) e^{-jkw_0 t} dt$	com
	$F[k] = \frac{a}{T} \int_{-\frac{T}{T}} x(at) e^{-jkw_0 t} dt$	
F	Put p=at then t=p/a and dt= $(1/a)$ dp	•
	$F[k] = \frac{a}{T} \int_{T} x(p) e^{-jkw_0 p} dp \frac{1}{a}$	
	$F[k] = \frac{a}{T} \int_{T} x(p) e^{-jkw_0 p} dp \frac{1}{a}$ $F[k] = \frac{1}{T} \int_{T} x(p) e^{-jkw_0 p} dp$	
	$\therefore F[k] = X[k]$	
i	i.e $ \begin{array}{c} If x(t) \leftrightarrow X[k] then \\ x(at) \leftrightarrow X[k] \end{array} $	
	State and prove Parseval's energy theorem for continuous aperiodic signals.	
٤	Solution:	
5	Statement:	
	The energy may be found from the time signal $x(t)$ or its spectrum $ X(j\omega) $	
i	i.e $E = \int_{-\infty}^{\infty} x(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) ^2 d\omega$	
	Proof: Energy of a signal x(t) is given by	
	$E = \int_{-\infty}^{\infty} x(t) ^2 dt = \int_{-\infty}^{\infty} x(t)x^*(t)dt - \dots - (1)$	
1	The Fourier transform and its inverse is	
2	$X(j\omega) = \int_{-j\omega t}^{\infty} x(t) e^{-j\omega t} dt$	
:	$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$ $x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega)e^{j\omega t} d\omega$	
	Taking conjugate for the above equations	
	$X^*(j\omega) = \int_{-\infty}^{\infty} x^*(t) e^{j\omega t} dt \qquad(2)$	
	$\mathbf{x}^{*}(\mathbf{t}) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \mathbf{X}^{*}(\mathbf{j}\omega) \mathbf{e}^{-\mathbf{j}\omega\mathbf{t}} d\omega$	
5	Substitute x(t) in equation (1)	

AE57/AC5	51/AT57 SIGNALS AND SYSTEMS $E = \int_{-\infty}^{\infty} \left[\frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega \right] x^*(t) dt$	
·	TT4	
	$E = \int_{-\infty}^{\infty} \left[\frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega \right] x^{*}(t) dt$ $E = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) d\omega \int_{-\infty}^{\infty} x^{*}(t) e^{j\omega t} dt$	m
		ļ
	Using equation (2) $E = \frac{1}{6} \int_{-\infty}^{\infty} X(i\omega) X^*(i\omega) d\omega$	
	$E = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) X^*(j\omega) d\omega$	
	$\mathbf{E} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \mathbf{X}(\mathbf{j}\omega) ^2 \mathrm{d}\omega$	
	This relation is called "Parsavel's theorem" or "Rayleigh's energy theorem".	
Q4 (b)	The transfer function of the system is given by:	
	$H(j\omega) = \frac{j\omega}{(j\omega)^2 + 3(j\omega) + 2}$	
	Find the system equation and also impulse response of the system.	
	Solution:	
	$H(jw) = \frac{J^{W}}{(jw)^{2} + 3(jw) + 2}$	
	$\frac{Y(jw)}{X(jw)} = \frac{jw}{(jw)^2 + 3(jw) + 2}$	
	$X (jw) (jw)^{2} + 3(jw) + 2$ $X (jw)(jw) = Y (jw)[(jw)^{2} + 3(jw) + 2]$	
	Taking IFT	
	$\frac{\mathrm{d}^2 y(t)}{\mathrm{d}t^2} + 3\frac{\mathrm{d} y(t)}{\mathrm{d}t} + 2y(t) = \frac{\mathrm{d} x(t)}{\mathrm{d}t}$	
	$H(jw) = \frac{jw}{(jw)^2 + 3(jw) + 2}$	
	(jw) + 5(jw) + 2 Let m=jw	
	$H(jw) = \frac{m}{(m)^2 + 3(m) + 2} = \frac{A}{m+2} + \frac{B}{m+1}$	
	Solving A=2 and B=-1	

AE57/AC5	51/AT57 SIGNALS AND SYSTEMS $H(jw) = \frac{2}{m+2} + \frac{-1}{m+1}$ $H(jw) = \frac{2}{m+2} + \frac{-1}{m+1}$
·	EIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
Q5 (a)	$H(jw) = \frac{2}{m+2} + \frac{-1}{m+1}$ $H(jw) = \frac{2}{jw+2} + \frac{-1}{jw+1}$ Tahing IFT u sin g relation $e^{-at} u(t) \leftrightarrow \frac{1}{a+jw}$ $\therefore h(t) = 2e^{-2t}u(t) - e^{-t}u(t)$ State and prove the following properties of discrete time Fourier Transform. (i) Time shifting property (ii) Differentiation in frequency domain Solution:
	i) Time shifting property: Statements:
	If $x(t) \xleftarrow{FT} X(j\omega)$
	then $x(t-t_0) \xleftarrow{FT} X(j\omega) e^{-j\omega t_0}$
	Shift in time domain will result in multiplying by an exponential in frequency domain
	Proof. $F\{x(t-t_0)\} = \int_{-\infty}^{\infty} x(t-t_0)e^{-j\omega t} dt$
	Let $t - t_0 = \tau$ $t = \tau + t_0$ and $dt = d\tau$
	$t = \tau + t_0 \text{ and } dt = d\tau$ $= \int_{-\infty}^{\infty} x(\tau) e^{-j\omega(\tau + t_0)} d\tau$
	$=\int_{-\infty}^{\infty} x(\tau)e^{-j\omega\tau}d\tau \ e^{-j\omega t_0}$
	ii) Differentiation in time domain property:
	If $x(t) \longleftrightarrow X(j\omega)$
	Then $\frac{dx(t)}{dt} \leftrightarrow (jw)X(j\omega)$
	Differentiating a signal in time domain is same as multiplying their spectrum

AE57/AC	C51/AT57 SIGNALS AND SYSTEMS
	PHIL
	in frequency domain Proof: Inverse FT $x(t) = \frac{1}{2\pi} \int X(jw)e^{jwt}$ Differentiating with respect to t $\frac{dx(t)}{dt} = \frac{1}{2\pi} \int (jw)X(jw)e^{jwt}$ From the above equation we have $\frac{dx(t)}{dt} \leftrightarrow (jw)X(j\omega)$
Q5 (b)	$\frac{dt}{dt}$ Consider a discrete time LTI System with impulse response. h [n] = α^{n} u [n] where $ \alpha < 1$. Use Fourier Transform to determine the response to the input x[n] = β^{n} u [n] with $ \beta < 1$
	Solution:
Q6 (a)	Example 5.13, Page no. 385 of Text Book - I Determine the Nyquist rate for the following signals i) x(t)=1+cos(200πt)+4sin(400πt) ii) x(t)=2cos(600πt) cos(800πt)
	Solution: i) $x(t)= 1+\cos(200\pi t)+4\sin(400\pi t)$ $f_1=100$ Hz and
	$f_2=200 \text{ Hz}$ $f_{Nyq}=2fm_{(max)}=2x200=400 \text{Hz}$
	ii) $x(t)=2\cos(600\pi t)\cos(800\pi t)$ =[cos1400 πt)+cos(200 πt)] $f_1=700$ Hz and $f_2=100$ Hz
Q6 (b)	f _{Nyq} =2fm _(max) =2x700=1400Hz With diagrams explain sampling of discrete time signals.
	Solution:
	Sampling theorem. Statement: Let m(t) is a message signal band limited to f _m Hz, if this signal is

AE57/AC51/AT57 SIGNALS AND SYSTEMS sampled at a rate $f_s \ge 2f_m$ then we can reconstruct the message signals from the sampled value with minimum distortion. i.e. $f \ge 2f$	
	20 TBOLL
	sampled at a rate $f > 2f$, then we can reconstruct the message signals from the
	sampled at a rate $f_s \ge 2f_m$ then we can reconstruct the message signals from the sampled value with minimum distortion. i.e $f_s \ge 2f_m$ where fs is sampling frequency and fm is maximum message frequency Let $m(t)$ =message signal $m(t) \leftrightarrow M(f)$ $\delta_T(t) = \sum_n \delta(t - nT)$ is periodic delta function with Fourier series $\delta_T(f) = \frac{1}{T} \delta(f - nf_s)$ Sampled signal $S(t)=m(t)\partial_T(t)$ Multiplication in time domain is same as convolution in frequency domain $\therefore S(f) = M(f) * \delta_T(f)$ $= M(f) * \left[\frac{1}{T} \sum \delta_T(f - nf_s)\right]$ Convolving any function with delta function yield the same function $\therefore S(f) = \frac{1}{T} \sum_n M(f - nf_s)$ Spectrum of sampled signal is periodic with period fs.
Q6 (c)	Find the frequency response and impulse response of the system with input $x(t)=e^{-2t} u(t)$ and output $y(t)=e^{-3t} u(t)$.
	Solution: Applying FT for input and output signal
	$x(t) = e^{-2t}u(t)$
	$x(t) = e^{-2t}u(t)$ $F\{x(t)\} = X(jw) = \frac{1}{2+jw}$
	$y(t) = e^{-3t}u(t)$
	$F\{y(t)\} = Y(jw) = \frac{1}{3+jw}$
	Frequencyre response $H(jw) = \frac{Y(jw)}{2 + jw} = 1 \qquad 1$
	$H(jw) = \frac{Y(jw)}{X(jw)} = \frac{2+jw}{3+jw} = 1 - \frac{1}{3+jw}$ Taking IFT
	$h(t) = \delta(t) - e^{-3t}u(t)$

	STU
AE57/AC5	51/AT57 SIGNALS AND SYSTEMS 20 Find, the output y(t) of the system described by the differential equation $\frac{dy(t)}{dt} + 5y(t) = x(t)$ by Laplace Transform method. Assume that the input
	CHINE
Q7 (a)	Find, the output $y(t)$ of the system described by the differential equation $dy(t)$
	$\frac{dy(t)}{dt} + 5y(t) = x(t)$ by Laplace Transform method. Assume that the input
	$x(t)=3e^{-2t}u(t)$ and initial condition is $y(0^+)=-2$.
	Solution:
	$\frac{dy(t)}{dt} + 5y(t) = x(t) = 3e^{-2t}u(t), y(0^+) = -2$
	Taking Laplace transform
	$sY(s) - y(0^+) + 5Y(s) = \frac{3}{s+2}$
	$Y(s) = \frac{3}{(s+2)(s+5)} + \frac{-2}{(s+5)}$
	$= \frac{A}{(s+2)} + \frac{B}{(s+5)} - \frac{2}{(s+5)}$
	A = 1 B = -1
	$Y(s) = \frac{1}{(s+2)} + \frac{-1}{(s+5)} - \frac{2}{(s+5)}$
	$Y(s) = \frac{1}{(s+2)} - \frac{3}{(s+5)}$
	TakingInverse LT
~= (1)	$y(t) = e^{-2t}u(t) - 3e^{-5t}u(t)$
Q7 (b)	Find x(t) from $X(S) = \frac{1}{(1+s)^2}$ Using convolution property
	Solution:
	$X(S) = \frac{1}{(1+s)^2} = \left[\frac{1}{(1+s)}\right] \left[\frac{1}{(1+s)}\right]$
	$e^{-t}u(t) \leftrightarrow \frac{1}{(1+s)}$
	Convolution property of LT is

AE57/AC5	1/AT57 SIGNALS AND SYSTEMS $x(t) = x_1(t) * x_2(t) \leftrightarrow X_1(w)X_2(w)$ $\therefore x(t) = \int_{0}^{\infty} e^{-\tau}u(\tau)e^{-(t-\tau)}u(t-\tau)d\tau$	
	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	
	$x(t) = x_1(t) * x_2(t) \leftrightarrow X_1(w) X_2(w)$	20
	$\therefore x(t) = \int_{-\infty}^{\infty} e^{-\tau} u(\tau) e^{-(t-\tau)} u(t-\tau) d\tau$	~
	$=te^{-t}, for t > 0$	
	$\therefore x(t) = t e^{-t} u(t)$	
Q7 (c)	Find the inverse Laplace transform of $X(s) = \frac{2}{s^2 + 4s + 8}$	
	Solution:	
	$X(s) = \frac{2}{s^2 + 4s + 8}$	
	$=\frac{2}{\left(s+2\right)^2+4}$	
	Using the relation	
	$\sin(at)u(t) \leftrightarrow \frac{a}{s^2 + a^2}$	
	$e^{-bt}\sin(at)u(t) \leftrightarrow \frac{a}{(s+b)^2 + a^2}$	
	ILT $x(t) = e^{-2t} \sin(2t)u(t)$	
Q8 (a)	Find the Z-transform of the following sequence and find the ROC $[1]^{n-2}$	
	(i) $x[n] = \left[\frac{1}{3}\right]^{n-2} \sin \Omega_0 (n-2) u[n-2]$	
	(ii) $x[n] = 5\left(\frac{1}{2}\right)^n u[n] - 2(3)^n u[-n-1]$	
	Solution:	
(i)	$x[n] = \left[\frac{1}{3}\right]^n \sin \Omega_0 n u[n]$ $\sin \Omega_0 n u[n] \leftrightarrow \frac{z^{-1} \sin \Omega_0}{1 - 2z^{-1} \cos \Omega_0 + z^{-2}} \text{ROC} \ z > 1$ Using scaling property	
	$\sin \Omega_0 n u[n] \leftrightarrow \frac{z^{-1} \sin \Omega_0}{1 - 2^{-1} \cos \Omega_0} \text{ROC} z > 1$	
	$1-2z^{-1}\cos\Omega_{0}+z^{-2}$ Using scaling property	

AE57/AC51	2/AT57 SIGNALS AND SYSTEMS $\begin{bmatrix} \frac{1}{3} \end{bmatrix}^n \sin \Omega_0 n u[n] \leftrightarrow \frac{\{1/3)z^{-1} \sin \Omega_0}{1 - (2/3)z^{-1} \cos \Omega_0 + \frac{1}{9}z^{-2}} \text{ROC} \ z > \frac{1}{3}$	
	EIII.	E
	$\begin{bmatrix} \frac{1}{3} \end{bmatrix}^n \sin \Omega_0 n u[n] \leftrightarrow \frac{\{1/3\} z^{-1} \sin \Omega_0}{1 - (2/3) z^{-1} \cos \Omega_0 + \frac{1}{9} z^{-2}} \text{ROC} \ z > \frac{1}{3}$ Using shifting property	com
	$\begin{bmatrix} \frac{1}{3} \end{bmatrix}^{n-2} \sin \Omega_0 (n-2) u[n-2] \leftrightarrow \begin{bmatrix} \frac{\{1/3\} z^{-1} \sin \Omega_0}{1 - (2/3) z^{-1} \cos \Omega_0 + \frac{1}{9} z^{-2}} \end{bmatrix} Z^{-2}$ $\begin{bmatrix} \frac{1}{3} \end{bmatrix}^{n-2} \sin \Omega_0 (n-2) u[n-2] \leftrightarrow \begin{bmatrix} \frac{\{1/3\} z^{-3} \sin \Omega_0}{1 - (2/3) z^{-1} \cos \Omega_0 + \frac{1}{2} z^{-2}} \end{bmatrix} \text{ROC} z > \frac{1}{3}$	
(ii)	$\lfloor 3 \rfloor \qquad \left[1 - (2/3)z^{-1}\cos\Omega_{0} + \frac{1}{9}z^{-1} \right] \qquad 3$ $x[n] = 5\left(\frac{1}{2}\right)^{n} u[n] - 2(3)^{n} u[-n-1]$	
	$X(z) = 5\sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n z^{-n} - 2\sum_{n=-\infty}^{-1} 3^n z^{-n}$	
	$X(z) = 5\sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n z^{-n} - 2\sum_{n=1}^{\infty} 3^{-n} z^n$	
	$X(z) = 5\sum_{n=0}^{\infty} \left(\frac{z^{-1}}{2}\right)^n - 2\sum_{n=1}^{\infty} (3^{-1}z)^n$	
	$X(z) = 5 \cdot \left[\frac{z}{z - \frac{1}{2}} \right] + 2 \left[\frac{z}{z - 3} \right]$ ROC: $ z < 3$ and $ z > 1/2$,	
	Roc: $(1/2) < z < 3$	
Q8(b) (i)	State and prove (i) Initial value theorem of z-transform (ii) Time Expansion property of z-transform	
	Solution:	
	 Initial value theorem: Statement: If x(n) is causal and 	
	$x[n] \leftrightarrow X(z)$ then $x(0) = \lim_{z \to \infty} X[Z]$	
	Proof: By definition	

AE57/AC5	1/AT57 SIGNALS AND SYSTEMS 20 CHAPTER
	1/AT57 SIGNALS AND SYSTEMS 20 $X(z) = \sum_{\eta=-\infty}^{\infty} x[n]z^{-n}$ For causal x(n) $X(z) = \sum_{\eta=0}^{\infty} x[n]z^{-n}$ $X(z) = x(0) + x(1)z^{-1} + x(2)z^{-2} + x(3)z^{-3}$ Taking limit $z \to \infty$ on both side
	$lt_{z \to \infty} X(z) = lt_{z \to \infty} [x(0) + x(1)z^{-1} + x(2)z^{-2} + x(3)z^{-3}]$ $\therefore lt_{z \to \infty} X(z) = x(0)$
Q8 (b) (ii)	Page no. 769 to 770 of Text Book – I
Q9 (a)	Define the following terms with refers to probability theory (i) Sample space (ii) Event (iii) Mutually exclusive event (iv) Conditional probability (v) Joint probability (vi) Power spectral density Solution:
	Sample space:
	Set consists of all possible outcome of an experiment
	Event:
	Event is a subset of a sample space
	Mutually exclusive event:
	If two events are mutually exclusive then there is no common element between them.
	Conditional probability:

SIGNALS AND SYSTEMS

AE57/AC51/AT57 SIGNALS AND SYSTEMS 20 20 20 20 20 20 20 20 20 20 20 20 20	
	Oune
	Probability of an event depends on some other event P(A/B)-probability of event A after the event B is over.
	Joint Probability:
	P(AB)=P(A)P(B/A) if A and B are statistically independent then, P(AB)=P(A)P(B)
	The power spectral density:
	PSD, describes how the power (or variance) of a time series is distributed with frequency. Mathematically, it is defined as the Fourier Transform of the autocorrelation sequence of the time series
Q9 (b)	What is wide sense stationary process mention its properties.
	Solution: A random process X(t) is called wide sense stationary if it satisfies
	 Mean of the process is constant autocorrelation function is independent of time variance of the process is constant
Q9 (c)	Write short notes on: (i) Gaussian processes (ii) Ergodic processes
	Solution:
	(i) Gaussian processes - Page no. 54 to 58 of Text Book - II
	(ii) Ergodic Processes - Page no. 41 to 42 of Text Book – II

TEXT BOOKS

1. Signals and Systems, A.V. Oppenheim and A.S. Willsky with S. H. Nawab, Second Edition, PHI Private limited, 2006

2. Communication Systems, Simon Haykin, 4th Edition, Wiley Student Edition, 7th Reprint 2007