AMIETE - ET/CS/IT

Time: 3 Hours
please write your roll no. at the space provided on each page IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions, selecting at least TWO questions from each part, each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. In an ideal Op-Amp open-loop voltage gain is
(A) Zero
(B) Infinite
(C) Larger
(D) Medium
b. Military grade op-amp temperature range is
(A) $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
(B) $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
(C) $0^{\circ} \mathrm{C}$ to $27^{\circ} \mathrm{C}$
(D) $-27^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$
c. The main purpose of the difference amplifier in op-amp is
(A) Better CMRR
(B) Better gain
(C) Noise cancellation
(D) All of these
d. The current to voltage converters are called as
(A) Transconductance Amplifier
(B) Transresistance Amplifier
(C) Transadmittance Amplifier
(D) Converters
e. Calculate phase-shift oscillator oscillating frequency if $\mathrm{R}=6.49 \mathrm{~K} \Omega$ and $\mathrm{C}=0.1 \mu \mathrm{~F}$
(A) 110 Hz
(B) 100 Hz
(C) 10 Hz
(D) 0.1 Hz
f. The 555 timer can be used with supply voltage range of
(A) $\pm 5 \mathrm{~V}$
(B) +5 V to +18 V
(C) $\pm 18 \mathrm{~V}$
(D) -5 V to -18 V
g. Which one of the following is a digital quantity?
(A) Current-flowing out of an electric outlet
(B) Ten-position switch
(C) Temperature of a room
(D) Automobile speedometer
h. How many bits are needed to represent decimal values ranging 0 to 12,500 ?
(A) 16
(B) 14
(C) 10
(D) 8
i. Simplified expression of $y=A \bar{B} D+A \bar{B} \bar{D}$ is
(A) 1
(B) AB
(C) $A \bar{B}$
(D) $\bar{B} D$
j. Simplified expression of $z=(\overline{\bar{A}}+C) \cdot(B+\bar{D})$ is
(A) 1
(B) $A B+\bar{B} D$
(C) $A \bar{C}+\bar{B} D$
(D) $A C+\bar{B} D$

PART (A)
Answer At least TWO questions. Each question carries 16 marks.
Q. 2 a. List the advantages of integrated circuits over discrete component circuit.

Fig. 1
b. In Fig.1, given $\mathrm{R}_{1}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{f}}=100 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{i}}=1 \mathrm{~V}$, a load of $25 \mathrm{k} \Omega$ is connected to the output terminal. Calculate
(i) i_{1}
(ii) V_{o}
(iii) i_{L} and i_{o}
c. Draw an AC equivalent circuit of Fig. 2 using hybrid- Π model.

Fig. 2
Q. 3 a. For the non-inverting amplifier of Fig. 3, $\mathrm{R}_{1}=1 \mathrm{k} \Omega$ and $\mathrm{R}_{\mathrm{f}}=10 \mathrm{k} \Omega$.Calculate the following:
(i) The maximum output offset voltage due to $\mathrm{V}_{\text {OS }}$ and I_{B}. The opamp is LM307 with $V_{O S}=10 \mathrm{mV}$ and $\mathrm{I}_{\mathrm{B}}=300 \mathrm{nA}$ and $\mathrm{I}_{\mathrm{OS}}=50 \mathrm{nA}$.
(ii) The value of $\mathrm{R}_{\text {comp }}$ needed to reduce the effect of I_{B}.
(iii) The maximum output-offset voltage if $\mathrm{R}_{\text {comp }}$ as calculated in (ii) is connected in the circuit.

Fig. 3
b. With the needful diagram show the difference between V to I and I to V converter.
Q. 4 a. Draw the positive peak-detector circuit and explain its working operation. (8)
b. In Fig.4, show that $V_{o}=\frac{1}{R C} \int V_{i} . d t$.

Q. 5 a. Explain the working of Successive Approximation Analog to Digit Converter.
b. Explain Astable-multivibrator circuit operation using 555 timers.

PART (B)

Answer At least TWO questions. Each question carries 16 marks.
Q. 6 a. What are the advantages of digital techniques over analog?
b. A small process control uses octal codes to represent it's 12-bit memory addresses.
(i) How many octal digits are required?
(ii) What is the range of addresses in octal?
(iii) How many memory locations are there?
c. Convert the following:
(i) 011111000001 (BCD) to decimal
(ii) $\mathrm{B}_{2} \mathrm{~F}_{16}$ to octal
(iii) 378_{10} to hexa.
Q. 7 a. Determine the output in Fig.5, for the condition $\mathrm{A}=0, \mathrm{~B}=1, \mathrm{C}=1$ and $\mathrm{D}=1$.

Fig. 5
b. Implement INVERTER, AND and OR gates using NAND and NOR-gates. (8)
c. Simplify the expression $X=(\bar{A}+B)(A+B+D) \bar{D}$
Q. 8 a. Explain the design procedure of full adder.
b. Write a short note on Demultiplexers.
Q. 9 a. Draw and explain the NOR-gate latch working operation.
b. Design four-bit ring counter using D flip-flops.

