Code: AE53/AC53/AT53

StudentBour Subject: ELECTRONIC DEVICES &

ROLL NO.

AMIETE - ET/CS/IT

Time: 3 Hours

DECEMBER 2012

ry.com Max. Marks: 10

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the O.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions, answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Choose the correct or the best alternative in the following: 0.1

a. Three resistors of value $1K\Omega$, $2K\Omega$ and $4K\Omega$ are connected in parallel. If supply voltage is 2V, the total current in the circuit is

(A) 3 mA	(B) 3.25 mA
(C) 3.5 mA	(D) 4 mA

b. The value of voltage equivalent of temperature at room temperature $(27^{\circ} k)$ is

(A) 26 mV	(B) 37 mV
(C) 100 mV	(D) 200 mV

c. Ripple factor for Full wave Rectifier without filter is _____

(A)	0.462	(B)	0.432
(C)	0.492	(D)	0.482

d. DC current of full wave rectifier is _____

(A) $\frac{I_m}{\pi}$	(B) $\frac{I_m}{\sqrt{2}}$
(C) $\frac{2I_m}{\pi}$	(D) $\frac{2I_m}{\sqrt{2}}$

e. Current gain β in terms of α is expressed as

(A) $\frac{\alpha}{1+\alpha}$	(B) $\frac{1+\alpha}{\alpha}$
(C) $\frac{\alpha}{1-\alpha}$	(D) $\frac{1-\alpha}{\alpha}$

f. A Four layer electronic device is _____

(A) BJT	(B) SCR
(C) UJT	(D) FET

AE53/AC53/AT53 / DECEMBER - 2012 1

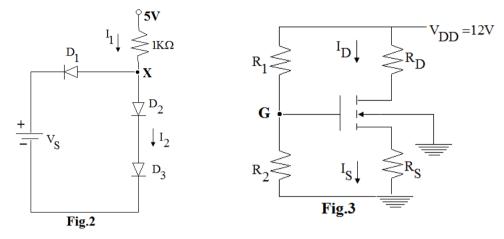
AMIETE - ET/CS/IT

	ROLL NO.
Code: AE53/AC53/AT53	Subject: ELECTRONIC DEVICES & TS
-	ROLL NO. Subject: ELECTRONIC DEVICES & with potential divider as biasing circuit have will have gate potential for $V_{DD} = 12V$ as (B) 6V (D) 12V
(A) 8V (C) 10V	(B) 6V (D) 12V
	T amplifier has $g_m = 1600 \mu \sec$, $r_d = 50 K\Omega$, $R_L = 5 K\Omega$. Signal voltage gain is
(A) 8 (C) -8	 (B) 0.8 (D) -0.8
i. For class-B amplific load line.	er operation, the operating point Q is at of the
(A) center(C) beginning	(B) cut off end(D) None
j. The length required $R_s = 200\Omega/square$	I to fabricate $20K\Omega$ resistor whose width is $25\mu m$ and is
(A) 250μm(C) 25000μm	(B) 1000μm(D) 2500μm

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- Q.2 a. State superposition and Thevinin's theorem. Give an example for each. (8)
 - b. Find the value of R in Fig.1 such that the power supplied by 100V source to the network is same as the power supplied by 5A source. (6)

c. Plot Z vs ω response of RLC parallel circuit indicating resonant frequency and half power points. (2)

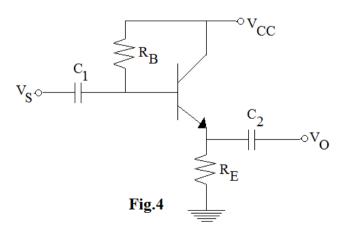

AE53/AC53/AT53 / DECEMBER - 2012 2

AMIETE - ET/CS/IT

Code: AE53/AC53/AT53 Subject: ELECTRONIC DEVICES &

- StudentBoun **Q.3** a. With neat diagram explain Zener diode I-V characteristics and how it works voltage regulator.
 - b. For the circuit shown in Fig.2, determine the current I_1 and I_2 for supply voltage $V_s < 0.7V$ and $V_s > 0.7V$. Assume $V_T = 0.7$ for all diodes. (6)

ROLL NO.



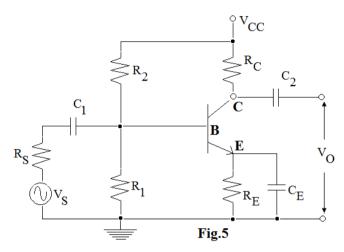
- a. Explain how MOSFET is different from JFET. 0.4
 - b. An nMOS transistor is used in the circuit of Fig.3. MOSFET has device parameter of K = 2. The circuit has $R_D = R_S = 2.5K\Omega$, $R_1 = 100K\Omega$, $R_2=200K\Omega$. Determine I_D and V_{DS} . (8)
- Q.5 a. Write circuit and small signal model of BJT amplifier (CE configuration). Derive an expression for i_c. (8)
 - emitter follower circuit of Fig.4 has $\beta = 98, r_{\pi} = 1.275 \mathrm{K}\Omega,$ b. The $R_B = 220K\Omega$, $R_E = 3.3K\Omega$, $V_{CC} = +12V$. Calculate:
 - (i) voltage gain
 - (ii) input and output impedances.

(8)

(8)

ty.com

AE53/AC53/AT53 / DECEMBER - 2012 3


AMIETE - ET/CS/IT

www.StudentBounty.com

Code: AE53/AC53/AT53 Subject: ELECTRONIC DEVICES &

- studentBounty.com a. Briefly explain the importance of the terms 'Quality factor' in Tuned **Q.6** Amplifier.
 - b. The amplifier circuit of Fig.5 uses silicon BJT with $\beta = 100$. The values of other circuit elements are $R_1 = 60K\Omega$, $R_2 = 140K\Omega$, $R_S = 4K\Omega$, $R_E = 3K\Omega$, $R_C = 4K\Omega$. Capacitances are assumed to be large and $V_{CC} = 10V$. Find DC bias current I_C and V_{CE} . (8)

ROLL NO.

0.7 a. Explain briefly functioning of series fed class-A large signal amplifier. (8)

With neat sketch explain the working of class-B push-pull amplifier. (8) b.

0.8 a. Explain various types of feedback connections.

- b. A voltage series feedback amplifier has the following data. A = -500, $R_{I} = 1.5K\Omega, R_{O} = 50K\Omega, \beta = \frac{1}{20}$. Calculate amplifier gain, input and output resistances. (8)
- a. Explain briefly oxidation and photolithography process of IC Fabrication Q.9 technique. (6)
 - b. What is the length required to fabricate $20K\Omega$ resistor whose width is 25μ m, given $R_s = 200 \Omega/Square$? (4)
 - c. Write cross-sectional view of CMOS fabrication and explain briefly. (6)

AE53/AC53/AT53 / DECEMBER - 2012 4

AMIETE - ET/CS/IT

(8)