## AMIETE - ET/CS/IT

Time: 3 Hours

## DECEMBER 2012

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions, answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. Three resistors of value $1 \mathrm{~K} \Omega, 2 \mathrm{~K} \Omega$ and $4 \mathrm{~K} \Omega$ are connected in parallel. If supply voltage is 2 V , the total current in the circuit is $\qquad$ —.
(A) 3 mA
(B) 3.25 mA
(C) 3.5 mA
(D) 4 mA
b. The value of voltage equivalent of temperature at room temperature $\left(27^{\circ} \mathrm{k}\right)$ is
(A) 26 mV
(B) 37 mV
(C) 100 mV
(D) 200 mV
c. Ripple factor for Full wave Rectifier without filter is $\qquad$
(A) 0.462
(B) 0.432
(C) 0.492
(D) 0.482
d. DC current of full wave rectifier is $\qquad$
(A) $\frac{\mathrm{I}_{\mathrm{m}}}{\pi}$
(B) $\frac{\mathrm{I}_{\mathrm{m}}}{\sqrt{2}}$
(C) $\frac{2 \mathrm{I}_{\mathrm{m}}}{\pi}$
(D) $\frac{2 \mathrm{I}_{\mathrm{m}}}{\sqrt{2}}$
e. Current gain $\beta$ in terms of $\alpha$ is expressed as
(A) $\frac{\alpha}{1+\alpha}$
(B) $\frac{1+\alpha}{\alpha}$
(C) $\frac{\alpha}{1-\alpha}$
(D) $\frac{1-\alpha}{\alpha}$
f. A Four layer electronic device is $\qquad$
(A) BJT
(B) SCR
(C) UJT
(D) FET $\mathrm{R}_{1}=\mathrm{R}_{2}=100 \mathrm{~K} \Omega$ will have gate potential for $\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}$ as $\qquad$
(A) 8 V
(B) 6 V
(C) 10 V
(D) 12 V
h. The elementary JFET amplifier has $\mathrm{g}_{\mathrm{m}}=1600 \mu \mathrm{sec}, \mathrm{r}_{\mathrm{d}}=50 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{L}}=5 \mathrm{~K} \Omega$. The value of small signal voltage gain is $\qquad$
(A) 8
(B) 0.8
(C) -8
(D) -0.8
i. For class-B amplifier operation, the operating point Q is at $\qquad$ of the load line.
(A) center
(B) cut off end
(C) beginning
(D) None
j. The length required to fabricate $20 \mathrm{~K} \Omega$ resistor whose width is $25 \mu \mathrm{~m}$ and $\mathrm{R}_{\mathrm{s}}=200 \Omega$ /square is
(A) $250 \mu \mathrm{~m}$
(B) $1000 \mu \mathrm{~m}$
(C) $25000 \mu \mathrm{~m}$
(D) $2500 \mu \mathrm{~m}$


## Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

## Q. 2 a. State superposition and Thevinin's theorem. Give an example for each.

b. Find the value of R in Fig. 1 such that the power supplied by 100 V source to the network is same as the power supplied by 5A source.


Fig. 1
c. Plot Z vs $\omega$ response of RLC parallel circuit indicating resonant frequency and half power points.
Q. 3 a. With neat diagram explain Zener diode I-V characteristics and how it work voltage regulator.
b. For the circuit shown in Fig.2, determine the current $I_{1}$ and $I_{2}$ for supply voltage $\mathrm{V}_{\mathrm{S}}<0.7 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{S}}>0.7 \mathrm{~V}$. Assume $\mathrm{V}_{\mathrm{T}}=0.7$ for all diodes.


Fig. 2
Q. 4 a. Explain how MOSFET is different from JFET.
b. An nMOS transistor is used in the circuit of Fig.3. MOSFET has device parameter of $\mathrm{K}=2$. The circuit has $\mathrm{R}_{\mathrm{D}}=\mathrm{R}_{\mathrm{S}}=2.5 \mathrm{~K} \Omega, \mathrm{R}_{1}=100 \mathrm{~K} \Omega$, $R_{2}=200 \mathrm{~K} \Omega$. Determine $\mathrm{I}_{\mathrm{D}}$ and $\mathrm{V}_{\mathrm{DS}}$.
Q. 5 a. Write circuit and small signal model of BJT amplifier (CE configuration). Derive an expression for $\mathrm{i}_{\mathrm{C}}$.
b. The emitter follower circuit of Fig. 4 has $\beta=98, r_{\pi}=1.275 \mathrm{~K} \Omega$, $\mathrm{R}_{\mathrm{B}}=220 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{E}}=3.3 \mathrm{~K} \Omega, \mathrm{~V}_{\mathrm{CC}}=+12 \mathrm{~V}$. Calculate:
(i) voltage gain
(ii) input and output impedances.

Q. 6 a. Briefly explain the importance of the terms 'Quality factor' in Tuned Amplifier.
b. The amplifier circuit of Fig. 5 uses silicon BJT with $\beta=100$. The values of other circuit elements are $\mathrm{R}_{1}=60 \mathrm{~K} \Omega, \mathrm{R}_{2}=140 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{S}}=4 \mathrm{~K} \Omega$, $\mathrm{R}_{\mathrm{E}}=3 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{C}}=4 \mathrm{~K} \Omega$. Capacitances are assumed to be large and $\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}$. Find DC bias current $\mathrm{I}_{\mathrm{C}}$ and $\mathrm{V}_{\mathrm{CE}}$.

Q. 7 a. Explain briefly functioning of series fed class-A large signal amplifier.
b. With neat sketch explain the working of class-B push-pull amplifier.
Q. 8 a. Explain various types of feedback connections.
b. A voltage series feedback amplifier has the following data. $A=-500$, $\mathrm{R}_{\mathrm{I}}=1.5 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{O}}=50 \mathrm{~K} \Omega, \beta=\frac{1}{20}$. Calculate amplifier gain, input and output resistances.
Q. 9 a. Explain briefly oxidation and photolithography process of IC Fabrication technique.
b. What is the length required to fabricate $20 \mathrm{~K} \Omega$ resistor whose width is $25 \mu \mathrm{~m}$, given $\mathrm{R}_{\mathrm{S}}=200 \Omega /$ Square?
c. Write cross-sectional view of CMOS fabrication and explain briefly.

