AMIETE - ET/CS/IT

Time: 3 Hours

DECEMBER 2012

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions, answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. If $u=\frac{x\left(x^{3}-y^{3}\right)}{x^{3}+y^{3}}$, then the value of $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}$ is equal to
(A) 0
(B) u
(C) $2 u$
(D) $\frac{1}{2} \mathrm{u}$
b. If $x=r \cos \theta, y=r \sin \theta$ then the value of $\frac{\partial r}{\partial x}$ is equal to
(A) 1
(B) x
(C) $\frac{x}{r}$
(D) $\frac{r}{x}$
c. The value of integral $\int_{0}^{1} d x \int_{0}^{\mathrm{x}} \mathrm{e}^{\mathrm{y} / \mathrm{x}} d y$ is equal to
(A) $\frac{1}{2}$
(B) e^{2}
(C) $\frac{1}{2}(\mathrm{e}-1)$
(D) $\frac{1}{4}(\mathrm{e}-1)$
d. The rank of the matrix $\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4 \\ 2 & 4 & 6\end{array}\right]$ is equal to
(A) 0
(B) 2
(C) 3
(D) does not exist
e. Using Newton-Raphson method to root of the equation $f(x)=0$ fails if
(A) $f(x)$ is an exponential function
(B) $f^{\prime}(x)$ is zero
(C) $\left|f^{\prime}(x)\right|=1$
(D) None of these
f. The degree of the differential equation $x^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{3}+y\left(\frac{d y}{d x}\right)^{4}+y^{4}=0$ is equal to
(A) 1
(B) 2
(C) 3
(D) 4
g. Integrating factor of the differential equation $(x+1) \frac{d y}{d x}=y+e^{x}(x+1)^{2}$ is equal to
(A) e^{x}
(B) e^{x+1}
(C) $\frac{1}{x+1}$
(D) $x+1$
h. Particular Integral (PI) for the differential equation $\left(D^{2}+4\right) y=\sin 3 x$ is equal to
(A) $\sin 3 x$
(B) $\cos 3 x$
(C) $\frac{1}{5} \sin 3 x$
(D) $-\frac{1}{5} \sin 3 x$
i. The value of the integral $\int_{0}^{\infty} x^{1 / 4} e^{-\sqrt{x}} d x$ is equal to
(A) $\frac{3}{2} \sqrt{\pi}$
(B) $\sqrt{\pi}$
(C) $\frac{5}{2} \sqrt{\pi}$
(D) $\frac{1}{2} \sqrt{\pi}$
j. The value of the integral $\int_{-1}^{+1} P_{m}(x) \cdot P_{n}(x) d x, n \neq m$ is equal to
(A) 1
(B) -1
(C) 0
(D) Does not exists

Answer any FIVE Questions out of EIGHT Questions.
Each question carries 16 marks.
Q. 2 a. If $x+y+z=u, y+z=u v, z=u v w$ then show that $\frac{\partial(x, y, z)}{\partial(u, v, w)}=u^{2} v$
b. Find the stationary values of $x^{2}+y^{2}+z^{2}$ subject to the conditions $a x^{2}+b y^{2}+c z^{2}=1$ and $1 x+m y+n z=0$
Q. 3 a. Evaluate $\int_{0}^{2} \int_{0}^{\sqrt{2 x-x^{2}}}\left(x^{2}+y^{2}\right) d y d x$
b. Compute $\iiint \frac{\mathrm{dxdydz}}{(x+y+z+1)^{3}}$ if the region of integration is bounded by the coordinate planes and the plane $\mathrm{x}+\mathrm{y}+\mathrm{z}=1$
Q. 4 a. Determine for what values of λ and μ the following equations have
(i) no solution
(ii) an unique solution
(iii) infinite number of solutions

$$
\begin{align*}
& x+y+z=6 \\
& x+2 y+3 z=10 \tag{8}\\
& x+2 y+\lambda z=\mu
\end{align*}
$$

b. Find the eigenvalues and the corresponding eigenvectors for the matrix

$$
A=\left[\begin{array}{ccc}
1 & -6 & -4 \tag{8}\\
0 & 4 & 2 \\
0 & -6 & -3
\end{array}\right]
$$

Q. 5 a. Write the Newton-Raphson procedure for finding $\sqrt[3]{\mathrm{N}}$ where N is a real number. Use it to find $\sqrt[3]{18}$ correct to 2 decimals, assuming 2.5 as the initial approximation.
b. Solve the following system of equations using Gauss-Seidal method

$$
\begin{gather*}
6 x+y+z=105 \\
4 x+8 y+3 z=155 \\
5 x+4 y-10 z=65 \\
\text { (Perform four iterations) } \tag{8}
\end{gather*}
$$

Q. 6 a. Solve $\left(1+y^{2}\right) d x=\left(\tan ^{-1} y-x\right) d y$
b. Solve the equation $\left[(\cos x) \log _{e}(2 y-8)+\frac{1}{x}\right] d x+\frac{\sin x}{y-4} d y=0$
Q. 7 a. Solve $x^{2} \frac{d^{3} y}{d x^{3}}+3 x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=x^{2} \log x$
b. Using the method of variation of parameters, solve $\frac{d^{2} y}{d x^{2}}+4 y=4 \tan 2 x$
Q. 8 a. Show that $\Gamma\left(\frac{1}{4}\right) \Gamma\left(\frac{3}{4}\right)=2 \int_{0}^{\pi / 2} \sqrt{\tan \theta} d \theta=4 \int_{0}^{\infty} \frac{\mathrm{x}^{2} \mathrm{dx}}{1+\mathrm{x}^{4}}=\pi \sqrt{2}$
b. Find solution in generalized series form about $x=0$ of the differential equation

$$
\begin{equation*}
3 x \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+y=0 \tag{8}
\end{equation*}
$$

Q. 9 a. Prove that $\mathrm{J}_{\mathrm{n}}(\mathrm{x})=\frac{\mathrm{x}}{2 \mathrm{n}}\left[\mathrm{J}_{\mathrm{n}-1}(\mathrm{x})+\mathrm{J}_{\mathrm{n}+1}(\mathrm{x})\right]$
b. Express $f(x)=x^{4}+3 x^{3}-x^{2}+5 x-2$ in terms of Legendre Polynomials.
(8)

