AMIETE - CS

Time: 3 Hours

DECEMBER 2012

Max. Marks: 100

please write your roll no. at the space provided on each page IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q. 1 Choose the correct or the best alternative in the following:

a. Number of elements in the power set of set $\mathrm{A}=\{\phi\}$ is
(A) 0
(B) 2
(C) 1
(D) 4
b. Number of relations that can be defined on set $\mathrm{A}=\{1,2,3,4\}$ is
(A) 1024
(B) 16
(C) 65536
(D) 256
c. Number of ways in which the letters of the word BANANA can be distinctly arranged is
(A) 60
(B) 720
(C) 16
(D) 120
d. Which of the following is not a rational number
(A) Sum of two rational numbers
(B) Product of two irrational numbers
(C) Sum of two recurring numbers
(D) Difference of two rational numbers
e. Suppose the universe consists of all integers. Consider
$P(x): x \leq 3$,
$r(x): x>0$
What is the truth value of $\neg \mathrm{P}(3) \vee \mathrm{r}(0)$?
(A) TRUE
(B) FALSE
f. Relation defined on a partially ordered set is not
(A) Anti-Symmetric
(B) Symmetric
(C) Transitive
(D) Reflexive
g. Which of the following is not true about composition of functions?
(A) Associative
(B) Commutative
(C) Existence of Inverse
(D) Existence of Identity
h. A group G is cyclic if
(A) G is a subgroup of a cyclic group
(B) G is of finite order
(C) G is isomorphic to a cyclic group
(D) None of these
i. The hamming distance between $\mathrm{x}=111000111$ and $\mathrm{y}=000100111$ is
(A) 3
(B) 4
(C) 5
(D) 6
j. Addition of two integers x and y is even then
(A) Both are odd
(B) x is even and y is odd
(C) x is odd and y is even
(D) x is odd and y is even multiple of x

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q. 2 a. Using Venn diagrams, prove that, for any sets A, B, C.
$\overline{(\mathrm{A} \cup \mathrm{B}) \cap \mathrm{C}}=(\overline{\mathrm{A}} \cap \overline{\mathrm{B}}) \cup \overline{\mathrm{C}}$
b. Three students $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ write an examination. Their chances of passing are $1 / 2,1 / 3$ and $1 / 4$ respectively. Find the probability that
(i) all of them pass
(ii) at least one of them passes
(iii) at least two of them pass.
Q. 3 a. Read the following paragraph. Convert each statement into propositional expressions and show that the conclusion is true.
"Ram is a student and he is sincere. Every sincere student excels in the class. Shyam is also a sincere student. Therefore Ram and Shyam both excel in their class."
b. Show that the Boolean expressions $\left(z^{\prime} \vee x\right) \wedge((x \wedge y) \vee z) \wedge\left(z^{\prime} \vee y\right)$ and $x \wedge y$ are logically equivalent.
Q. 4 a. Prove that $\mathrm{R} \rightarrow \mathrm{S}$ is a valid conclusion from the premises $\mathrm{P} \rightarrow(\mathrm{Q} \rightarrow \mathrm{S}), \sim \mathrm{R} \vee \mathrm{P}$ and Q .
b. Prove that
$\{\forall x[P(x) \vee Q(x)]\} \wedge\{\exists x \neg P(x)\} \wedge\{\forall x[\neg Q(x) \vee R(x)]\} \wedge\{\forall x[S(x) \rightarrow \neg R(x)]\} \Rightarrow \exists x \neg S(x)$
Q. 5 a. Using mathematical induction method, prove that $11^{\mathrm{n}+2}+12^{2 \mathrm{n}+1}$ is divisible by 133 for any $n \in N$.
b. A sequence $\left\{a_{n}\right\}$ is defined recursively by $a_{1}=4, a_{n}=a_{n-1}+n$ for $n \geq$ Find a_{n} in explicit form.
Q. 6 a. Show that if a relation R defined on a set A is symmetric and transitive then R is not irreflexive.
b. Let L is a distributive lattice. Show that if there exists an element a such that $a \wedge x=a \wedge y$ and $a \vee x=a \vee y$ then $\mathrm{x}=\mathrm{y}$.
Q. 7 a. Let f be a function defined on a real number R such that $f(x)=2 x-1$ then show that f is an invertible function and find inverse function of f.
b. Define even permutation function. Show that composition of two even permutation function is even permutation function.
Q. 8 a. Let (G, *) be a group then for any two elements a and bof (G, *) prove that $\left(a^{*} b\right)^{-1}=b^{-1} * a^{-1}$
b. Show that set $G=\{1, i,-i,-1\}$ forms a cyclic group under the binary operation of multiplication.
Q. 9 Write short notes on TWO of the followings:
(i) Parity Check Matrix
(ii) Hamming distance
(iii) Ring z_{n}

