Diplete – ET/CS (NEW SCHEME) – Code: DE55/DC3

Subject: ENGINEERING MATHEMATICS - II

Time: 3 Hours

5/DC5 Max. Marks: 100

JUNE 2011

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

(2×10)

a. The value of the
$$\lim_{x \to 0} \frac{8^x - 2^x}{x}$$
 is

b. If
$$y = \cos(\sin x)$$
, then $\frac{dy}{dx}$ is equal to

(A) $\cos x . \sin x$	$(\mathbf{B}) - \sin(\sin x) \cdot \cos x$
(C) $\sin^2 x \cdot \cos x$	(D) $\cos^2 x \cdot \sin x$

c. If $z = 1 + i\sqrt{3}$, then $z^2 + 4$ is equal to

(A) $z\sqrt{3}$	(B) 3z
(C) 2z	(D) 4z

d. The principal argument of -2i is equal to

(A)
$$-\pi/3$$
 (B) $-\pi/2$
(C) $\pi/2$ (D) $\pi/3$

- e. If $|\vec{a} + \vec{b}| = 60$, $|\vec{a} \vec{b}| = 40$ and $|\vec{b}| = 46$, then $|\vec{a}|$ is equal to
 - (A) 24
 (B) 42
 (C) 22
 (D) 26

DE55/DC55 / ILINE - 2011

1

f. The value of
$$\int_{0}^{\pi/2} \sin^2 x \, dx$$
 is

(A) $\pi/4$	(B) $\pi/2$
(C) $\pi/3$	(D) π/6

g. If the roots are 2, 3 then complementary function is equal to

(A) $c_1 e + c_2 e^{5x}$	(B) $c_1 e^x + c_2 e^{5x}$
(C) $c_1 e^{2x} + c_2 e^{3x}$	(D) $c_1 e^{x_1} + c_2 e^{x_2}$

h. The period of the function of $|\cos x|$ is equal to

(A) π	(B) 2π
(C) 3π	(D) 4π

i. $L{4\cos 5t}$ is equal to

(A) $\frac{5s}{s^2 + 16}$	(B) $\frac{2s}{s^2 + 16}$
(C) $\frac{4s}{s^2 + 16}$	(D) $\frac{4s}{s^2 + 25}$
j. $L^{-1}\left\{\frac{5}{s+3}\right\}$ is equal to	
(A) $3e^{-5t}$	(B) 5e ^{3t}
(A) $3e^{-5t}$ (C) $5e^{-3t}$	(B) $5e^{3t}$ (D) $3e^{5t}$

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2	a. Verify Rolle's theorem for $f(x) = (x-1)(x-2)(x-3)$	(8)
	b. Using Maclaurin's series, expand in the power series of sinx.	(8)
Q.3	a. Evaluate $\int_{0}^{\pi} \theta \sin^4 \theta \cdot \cos^6 \theta d\theta$	(8)
	b. Find the length of the curve $x = a\cos^3\theta$, $y = a\sin^3\theta$, in the first quadrant.	(8)

DE55/DC55 / IIINE - 2011

StudentBounty.com

າ

- **O.4** a. If n is positive integer, prove that $(\sqrt{3}+i)^n + (\sqrt{3}-i)^n = 2^{n+1}, \cos\frac{n\pi}{6}, (i = \sqrt{-1})$
- StudentBounty.com b. The impedances $z_1 = 10 - j60$ and $z_2 = 10 + j20$ are connected in parallel across a 200 volts a.c. supply. Calculate
 - (i) current in each branch and the total current and
 - (ii) power consumed in each branch.

Q.5 a. Show that the four points
$$2\vec{a}+3\vec{b}-\vec{c}$$
, $\vec{a}-2\vec{b}+3\vec{c}$, $3\vec{a}+4\vec{b}-2\vec{c}$ and $\vec{a}-6\vec{b}+6\vec{c}$ are coplanar. (8)

b. A force given by $3\hat{i} + 2\hat{j} - 4\hat{k}$ is applied at the point (1,-1,2). Find the moment of the force about the point (2,-1,3). (8)

Q.6 a. Solve the differential equation
$$\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = \cos 2x$$
. (8)

- b. The differential equation for a circuit in which self inductance neutralize each other is $L \frac{d^2 I}{dt^2} + \frac{I}{C} = 0$. Find the current I as a function of t, given that I_m is the maximum current and I = 0 when t = 0. (8)
- **Q.7** a. Find the Fourier series representing f(x) = x, $0 < x < 2\pi$ and sketch its graph from $x = -\pi$ to $x = 4\pi$. (8)

b. Expand
$$f(x) = e^x$$
 in a cosine series over (0,1). (8)

a. Find Laplace transform of sin 3t cos 5t (8) **Q.8**

b. Find Laplace transform of
$$\frac{1-e^{2t}}{t}$$
 (8)

Q.9 a. Find
$$L^{-1}\left[\frac{s}{s^4 + s^2 + 1}\right]$$
 (8)

b. Solve the differential equation using Laplace transform method,

$$\frac{d^2y}{dt^2} + 4y = \sin t, y(0) = 1, y'(0) = 0$$
(8)

DE55/DC55 / IIINE - 2011

2