Code: DC09 Time: 3 Hours

JUNE 2011

Student Bounts, com **Subject: COMPUTER GRAP**

Max. Marks:

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1	Choose the correct or the best alternative in the following
V.1	Choose the correct or the best afternative in the following

 (2×10)

- a. The resolution of a 2×2 inch image that has 512×512 pixels is
 - (A) 128 pixels per inch
- **(B)** 512 pixels per inch
- (C) 1024 pixels per inch
- (**D**) 256 pixels per inch

- b. Light pen is a
 - (A) Input device

- (B) Output device
- **(C)** Memory device
- (D) Plotting device
- c. To move the image or object from one position to another is called as
 - (A) Scaline

(B) Rotation

(C) Translation

- (D) Skewing
- d. A line with starting points as (2, 3) and ending point (6, 18) is given. The slope of line is
 - **(A)** 2

(B) 4

(C) 5

- **(D)** 3
- e. The matrix for rotation clockwise direction is

$$\begin{array}{ccc} \textbf{(A)} & \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \\ \textbf{(C)} & \begin{bmatrix} \cos\theta & -\cos\theta \\ \sin\theta & \sin\theta \end{bmatrix} \\ \end{array}$$

$$\begin{array}{c|cc}
\mathbf{(B)} & \cos \theta & \sin \theta \\
\sin \theta & \cos \theta
\end{array}$$

(C)
$$\begin{bmatrix} \cos \theta & -\cos \theta \\ \sin \theta & \sin \theta \end{bmatrix}$$

(**D**)
$$\begin{bmatrix} \cos \theta & \sin \theta \\ -\cos \theta & \sin \theta \end{bmatrix}$$

- f. There could be maximum of _____ vanishing points along the three orthogonal axes.
 - **(A)** 2

(B) 4

(C) 5

(D) 3

				2	
	g.	Short term for picture element is called as (A) Buffer (B) Vector (C) Pixel (D) Graphic The method for selecting and enlarging portions of a drawing is called (A) windowing. (B) clipping. (C) viewport. (D) none.			
		(A) Buffer	(B) Vector	, i	
		(C) Pixel	(D) Graphic		
	h.	h. The method for selecting and enlarging portions of a drawing is called			
		(A) windowing.	(B) clipping.		
		(C) viewport.	(D) none.		
	i.	DDA stands for			
		(A) Digital Decision Analysis	(B) Decision Divide Analysis		
		(C) Digital Differential Analysis	(D) Digital Differential Analyzer		
	j.	. If the line is entirely within the window then both points will have out codes			
		(A) 1111	(B) 1000		
		(C) 0000	(D) 1011		
Q.2	a.	How computer graphics is used in aeronautical?	n CAD of architecture, mechanical a	and (6)	
	h	What is the principle of polarize li	oht? How it is used in LCD?	(10)	
				(10)	
Q.3	a.	Explain the following input device	S:		
		(i) Light pens			
		(ii) Joy sticks(iii) Image scanner		(9)	
	b.	Write a DDA line algorithm for re	presenting a line in third quadrant.	(7)	
Q.4	a.	Describe rubber band methods and	l dragging.	(7)	
	b.	Write Bresenham's circle drawing	algorithm.	(9)	
Q.5	a.	Find the normalization transformation that maps a window lower left			
		corner is at (1, 1) and upper right corner is at (3, 5) on to (i) viewport that is the entire normalized device screen and			
		- · · ·	corner at $(0, 0)$ and upper right corner.	(8)	
	b.	Describe Cohen-Sutherland line cl	ipping algorithm.	(8)	
Q.6	a.	Explain generation of bar charts ar	nd pie charts.	(8)	

b. Find the matrix for mirror reflection with respect to the plane pathrough the origin and having a normal vector whose direction N=I+J+K.

- Student Bounty Com $\mathbf{Q.7}$ a. Using the origin as the centre of projection derive the perspective transformation onto the plane passing through the point $R_0(x_0, y_0, z_0)$ and having the normal vector $N = n_1I + n_2J + n_3K$.
 - b. Explain Z-buffer algorithm. What are advantages and disadvantages of Z-buffer algorithm? **(8)**
- a. Write brief note on Octree representation **Q.8 (8)**
 - b. Explain phong specular reflection illumination model. **(8)**
- Q.9 a. What are the various hardware requirements of multimedia components and explain it. **(8)**
 - b. Write short note on the following:
 - (i) Windows Paint Brush
 - (ii) CRT (4×2)