AMIETE - ET (NEW SCHEME) Code: AE72

Subject: MICROWAVE THEORY AND TECHNIQUES

SHIIDENH BOUNTY.COM **JUNE 2011** Time: 3 Hours Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Ouestions answer any FIVE Ouestions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1	Choose the correct or the best alternative in the following:	(2×10)
-----	--	---------------

- a. A transmission line has following parameters $R = 2 \Omega/m$, G = 0.5 m mho/m, L = 8 nH/m, C = 0.23 pF, f = 1 GHz, Its characteristic impedance is given by (A) 50Ω **(B)** 75Ω **(C)** 100Ω **(D)** 179.44+j26.50 b. A certain transmission line has a characteristic impedance of 75 + j0.01 Ω and is terminated in a load impedance of $70 + j50 \Omega$. The reflection coefficient is ____ (A) 0.8+i40**(B)** 0.6+i50**(D)** 0.08+i0.32(C) 0.9+j60c. A micro wave circulator is a multiport junction where the power can flow from (A) port(1) to port(2) and port(2) to port(3) etc **(B)** port(3) to port(2) and port(2) to port(1) (C) port 1 to all other ports (**D**) microwave circulators cannot be used for power carrying purposes d. A two cavity Klystron is a widely used microwave amplifier operated by and _____. (A) Velocity and current modulation
 - **(B)** Electron motion
 - (C) On same principals as low frequency tubes
 - (D) Slow wave structure
 - e. Crossed field tubes derive their names from the fact that
 - (A) D.C electric field and D.C magnetic field are perpendicular to each other
 - (B) A.C magnetic field and A.C electric field are horizontal to each other
 - (C) A.C magnetic field and A.C electric field are perpendicular to each other
 - (D) There is no relation between A.C magnetic field and A.C electric field

f. X band pulsed cylindrical magnetron has magnetic flux density $B_0 = 0.336$ wb/mt², its cyclotron angular frequency is _____.

(A) 5.91×10^{10} rad

(B) 11×10^{10} radians

(C) 5×10^5 rad

(D) 6×10^5 radians

Student Bounty.com g. A certain Si JFET has the following parameters channel height $a = 0.1 \mu m$, Electron concentration $N_d = 8 \times 10^{17} \text{cm}^{-3}$ Relative dielectric constant $\varepsilon_r = 11.8$ Then the pinch off voltage is given by _____.

(**A**) 60 volts

(B) 106.6 volts

(C) 88 volts

(D) 6.66 volts

h. The phase velocity of a TEM wave can be expressed by the relation which is the velocity of light in an unbounded dielectric is given by ______.

(A) $V_p = w/\beta_g$

(B) $V_p = w/\beta_o$

(C) $V_p = w/w_o$

(**D**) $V_p = \beta_g / \beta_o$

i. The tunnel diode is a _____ resistance semiconductor p-n junction diode

(A) positive

(B) negative

(C) high

(D) low

j. In a directional coupler all four ports are completely matched, and then diagonal elements of the S matrix are given by _____.

- (A) $S_{11} = S_{22} = S_{33} = S_{44} = 0$ (B) $S_{11} = S_{22} = S_{33} = S_{44} = 1/\sqrt{2}$
- (C) $S_{11} = S_{22} = S_{33} = S_{44} = 1$
- **(D)** $S_{11} = S_{22} = S_{33} = S_{44} = 3/2$

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

a. With the help of transmission line equation derive the expression for $\mathbf{Q.2}$ characteristic impedance Z₀ and phase velocity V_p.

b. A transmission line has a characteristic impedance of $50+j0.01\Omega$ and is terminated in a load impedance of 73-j 42.5Ω . Calculate the (i) Reflection coefficient (ii) The standing wave ratio **(6)**

Write a note on single stub matching

(4)

Q.3 a. Explain power is losses in rectangular waveguides.

(8)

b. An air filled rectangular wave guide of inside dimensions 7×3.5 cms operates in the dominant TE_{10} mode as shown in Fig.1

- (i) Find cut off frequency
- (ii) Phase velocity of wave at 3.5GHz
- (iii) λg, the guide wave length

(8)

- Q.4 a. What are directional couplers, explain with a neat diagram. Derive an expression for an S matrix of directional coupler
 (8)
 - b. Writ short notes on: (i) Microwave Hybrids (ii) Microwave Isolator (8)
- Q.5 a. Explain the principles of operation of microwave tunnel diode. (6)
 - b. Draw a neat diagram of TRAPATT diode; explain the principle of operation with neat figures (4)
 - c. Avalanche zone velocity of a TRAPATT diode has following parameters. Doping concentration $N_A = 2 \times 10^{15} \text{ cm}^{-3}$, current density $J = 20 \text{ KA/cm}^2$. Calculate the avalanche-zone velocity. (6)
- Q.6 a. Write the schematic diagram of two cavity klystron amplifier and explain the velocity modulation process (8)
 - b. A two cavity Klystron has following parameters $V_o = 1000$ volts, $R_o = 40 \text{ K}\Omega$, $I_o = 25 \text{ mA}$, f = 3GHz. The gap spacing in either cavity is d = 1 mm spacing between two cavities L = 4 cms, Effective shunt impedance, excluding beam loading $R_{sh} = 30\text{K}\Omega$. Calculate the efficiency of the amplifier neglecting beam loading.
- Q.7 a. Draw the schematic diagram of a cylindrical magnetron oscillator and explain its action (6)
 - b. Obtain Hull cut off magnetic equation and cut off voltage for cylindrical magnetron. (5)
 - c. An X band pulsed cylindrical magnetron has the following operating parameters. Anode voltage $V_o = 26$ K volts, Beam current $I_o = 27$ A, Magnetic flux density $B_o = 0.336$ wb/m². Radius of cathode cylinder a = 5 cms, Radius of vane edge to center = b = 10 cms, compute the (i) cyclotron angular f_r (ii) Cut off voltage for a fixed B_o (iii) The cut off magnetic flux density (5)

Student Bounty Com

Q.8 a. Explain the microstrip lines and the associated losses.

Student Bounty com b. A lossless parallel strip line has strip width W, $\varepsilon_{rd} = 6$ and thickness d = 4 mm. Calculate (i) Required width W of the conducting strip in order to have a characteristic impedance of 50 Ω (ii) Strip line capacitance (iii) Strip line impedance (iv) The phase velocity in parallel strip line

Q.9 a. Write short note on

- Monolithic microwave integrated circuit
- (ii) DC Sputtering **(8)**
- b. Briefly explain MMIC fabrication techniques. **(8)**