AMIETE - ET/CS/IT (NEW SCHEME) - Code: AE56/AC56

Subject: ENGINEERING MATHEMATICS - II

Time: 3 Hours

JUNE 2011

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. $\operatorname{curl}(x \hat{i}+y \hat{j}+z \hat{k})$ is equal to
(A) 0
(B) 1
(C) -1
(D) None of these
b. Residue of $\frac{\cos z}{z}$ at $\mathrm{z}=0$ is
(A) 1
(B) -1
(C) 2
(D) 0
c. When a vibrating string has an initial velocity, its initial conditions are
(A) $\left(\frac{\partial y}{\partial t}\right)_{t=0}=0$
(В) $\left(\frac{\partial y}{\partial t}\right)_{t=0}=v$
(C) $\left(\frac{\partial y}{\partial t}\right)_{t=0}=\infty$
(D) None of these
d. If $\phi=3 x^{2} y-y^{3} z^{2}, \operatorname{grad} \phi$ at $(1,-2,-1)$ is equal to
(A) $-(12 \mathrm{i}+9 \mathrm{j}+16 \mathrm{k})$
(B) $(12 \mathrm{i}+5 \mathrm{j}+8 \mathrm{k})$
(C) $-(12 \mathrm{i}-5 \mathrm{j}+8 \mathrm{k})$
(D) $-(12 \mathrm{i}+5 \mathrm{j}-8 \mathrm{k})$
e. Image of $|z+1|=1$ under the mapping $w=1 / z$ is (where $w=u+i v$)
(A) $2 \mathrm{v}+1=0$
(B) $2 \mathrm{v}-1=0$
(C) $2 \mathrm{u}+1=0$
(D) $2 \mathrm{u}-1=0$
f. The solution of the partial differential equation $\frac{\partial^{2} z}{\partial y^{2}}=\sin (x y)$ is
(A) $z=-x^{2} \sin (x y)+y f(x)+g(x)$
(B) $z=-x^{2} \sin (x y)-x f(x)+g(x)$
(C) $z=-y^{2} \sin (x y)+y f(x)+g(x)$
(D) $z=x^{2} \sin (x y)+y f(x)+g(x)$
g. In a Poisson distribution if $2 P(x=1)=P(x=2)$, then the variance is
(A) 4
(B) 2
(C) 3
(D) 1
h. If variant of the random variable X is 2 , then the variant of $(2 \mathrm{X}+3)$ is
(A) 6
(B) -8
(C) 8
(D) $2 \sqrt{ } 2$
i. The value of $\Delta^{\mathrm{n}}\left[\mathrm{e}^{\mathrm{x}}\right]$, where Δ is a forward operator
(A) $(\mathrm{e}+1)^{\mathrm{n}} \mathrm{e}^{\mathrm{x}}$
(B) $(\mathrm{e}-1)^{\mathrm{n}} \mathrm{e}^{\mathrm{x}}$
(C) $(\mathrm{e}+1)^{\mathrm{n}} \mathrm{e}^{-\mathrm{x}}$
(D) None of these
j. The value of $\int_{0}^{1} \frac{d x}{1+x^{2}}$ by Simpson's $1 / 3^{\text {rd }}$ rule (taking $\mathrm{n}=1 / 4$) is equal to
(A) -0.7845
(B) 0.7854
(C) 0.8745
(D) 0

Answer any FIVE Questions out of EIGHT Questions.
 Each question carries 16 marks.

Q. 2 a. Show that the function $f(z)=\bar{z}$ is continuous at the point $\mathrm{z}=0$, but not differentiable at $\mathrm{z}=0$.
b. Find the image of the region $|z-i|<2$ under the mapping $w=\frac{1+i}{z+i}$.
Q. 3 a. Evaluate the integral
$\int_{c}\left(x+y^{2}-i x y\right) d z$, where $C: z=z(t)=\left\{\begin{array}{cc}t-2 i, & 1 \leq t \leq 2 \\ 2-i(4-t), & 2 \leq t \leq 3\end{array}\right.$
b. Show that the function $f(z)=\operatorname{Ln}[z / z-1]$ is analytic in the region $|z|>1$, obtain the Laurent series expansion about $\mathrm{z}=0$ valid in the region.
Q. 4 a. If $\nabla . \bar{E}=0, \nabla . \bar{H}=0, \nabla \times \bar{E}=-\frac{\partial \bar{H}}{\partial t}, \nabla \times \bar{H}=\frac{\partial \bar{E}}{\partial t}$, show that vector E and H satisfy the wave equation $\nabla^{2} u=\frac{\partial^{2} u}{\partial t^{2}}$
b. Find the values of constants λ and μ so that the surfaces $\lambda x^{2}-\mu y z=(\lambda+2) x$, $4 x^{2} y+z^{3}=4$ intersect orthogonally at the point $(1,-1,2)$.
Q. 5 a. The cylinder $y^{2}+z^{2}=9$ intersect the sphere $x^{2}+y^{2}+z^{2}=25$ find the surfact area of the portion of the sphere cut by the cylinder above the yz plane and within the cylinder.
b. Use the Divergence theorem to evaluate $\iint_{S}(\bar{v} \cdot \bar{n}) d A$, where $\bar{v}=x^{2} z \hat{i}+y \hat{j}-x z^{2} \hat{k}$, and S is the boundary of the region bounded by the paraboloid $\mathrm{z}=x^{2}+y^{2}$ and the plane $\mathrm{z}=4 \mathrm{y}$.
Q. 6 a. Solve by method of separation of variables $\frac{\partial^{2} z}{\partial x^{2}}-2 \frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=0$
b. Solve $x^{2}(y-z) p+y^{2}(z-x) q=z^{2}(x-y)$
Q. 7 a. The following are data from the steam table:

$\mathrm{Temp}{ }^{\circ} \mathrm{C}(\mathrm{t})$	140	150	160	170	180
Pressure $\mathrm{kgf} / \mathrm{cm}^{2}(\mathrm{P})$	3.685	4.854	6.302	8.076	10.225

Using Newton's formula, find the pressure of steam for temperature 142° and 175°.
b. A curve is drawn to pass through the following points:

x	1	1.5	2	2.5	3	3.5	4
y	2	2.4	2.7	2.8	3	2.6	2.1

Estimate the area bounded by the curve, x-axis and lines $x=1, x=4$. Also find the volume of solid generated by revolving this area using Simpson's $3 / 8$ rule.
Q. 8 a. A problem in mechanics is given to three students A, B and C whose chances of solving it are $\frac{1}{2}, \frac{1}{3}$ and $\frac{1}{4}$ respectively. What is the probability that the problem will be solved?
b. There are three bags: first containing 1 white, 2 red, 3 green balls; second 2 white, 3 red, 1 green balls and third 3 white, 1 red, 2 green balls. Two balls are drawn from a bag chosen at random. These are found to be one white \& one red. Find the probability that the balls so drawn came from the second bag.
Q. 9 a. X is a continuous random variable with probability density function given by
$f(x)=\left\{\begin{array}{cc}x^{3}, & 0 \leq x \leq 1 \\ (2-x)^{3}, & 1 \leq x \leq 2\end{array}\right.$
find the standard deviation and also the mean deviation about the mean.
b. A car hire firm has two cars which it hires out day by day. The numb demand for a car on each day is distributed as a Poisson Distribution wit mean 1.5. Calculate the proportion of days on which car is not used and the proportion of days on which some demand is refused. (given that $e^{-1.5}=0.2231$)

