AMIETE - ET/CS/IT (NEW SCHEME) - Code: AE54/AC54/A

Subject: LINEAR ICs \& DIGITAL ELECTRONICS
Time: 3 Hours

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to $\mathbf{Q} .1$ must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions, selecting at least TWO questions from each part, each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. The minimum gain required for an op amp so that the error in the gain from the ideal is less than 0.1% when the op amp is used as a voltage follower is \qquad
(A) 999
(B) 1000
(C) 1001
(D) 10000
b. An op amp has a common mode gain of 5 , and CMRR of 94 dB . If its differential input is $2 \mu \mathrm{~V}$ and the common mode input of 1 mV , the output in mV is equal to \qquad —.
(A) 495
(B) 500
(C) 505
(D) 510
c. The slew rate of an op amp is $3.14 \mathrm{~V} / \mu \mathrm{sec}$. If the frequency of the sinusoidal input to the voltage follower using this op amp is 5 kHz , the maximum amplitude of the input that could be applied so that the output is not distorted is equal to \qquad .
(A) 31.4 V
(B) 50 V
(C) 62.8 V
(D) 100 V
d. The output voltage in the circuit of Fig. 1 is equal to \qquad .
(A) 0 V
(B) -1 V
(C) +1 V
(D) -4 V

Fig. 1
e. In the Schmitt trigger circuit of Fig.2, the UTP (Upper Trigger Point) is equ
to \qquad -
(A) -6 V
(B) -4 V
(C) +4 V
(D) +6 V

f. The hexadecimal equivalent of the decimal number 4444 is equal to \qquad .
(A) 115C
(B) 114 D
(C) C511
(D) D411
g. The 2 -input EXCLUSIVE-OR gate gives HIGH output when both the inputs are
\qquad —.
(A) LOW
(B) HIGH
(C) Equal
(D) Different
h. The minimum number of NOR gates required to realize an EXCLUSIVE-OR function (using only NOR gates) is \qquad .
(A) 3
(B) 4
(C) 5
(D) 6
i. If the input frequency to a ripple counter using 5 flip flops is 1 MHz , the output frequency is equal to \qquad .
(A) 100 kHz
(B) 20 kHz
(C) 3.5 kHz
(D) 31.25 kHz
j. The main advantage of parallel comparator A / D converter is
(A) Accuracy
(B) Low noise
(C) Low cost
(D) Low conversion time

PART (A)

Answer At least TWO questions. Each question carries 16 marks.
Q. 2 a. In the circuit of Fig.3, determine the voltage gain v_{0} / v_{i} and the input impedance of the non-inverting amplifier. The op amp has an input impedance of $500 \mathrm{~K} \Omega$, output impedance of 500Ω and an open loop gain of 10^{4}.

b. In the circuit of Fig.4, determine the output voltage if the input voltage is 10 mV . Assume that the op-amp is ideal.
(8)

Q. 3 a. Design a circuit using two ideal op amps to obtain an output $\mathrm{V}_{0}=\mathrm{V}_{1}-2 \mathrm{~V}_{2}+3 \mathrm{~V}_{3}-4 \mathrm{~V}_{4}$. Inputs available are only $+\mathrm{V}_{1},+\mathrm{V}_{2,}+\mathrm{V}_{3}$ and $+\mathrm{V}_{4}$. (8)
b. In the circuit of Fig.5, obtain the expression for I_{L}.

Q. 4 a. Draw the circuit of a integrator using an ideal op amp, and prove that it works as an integrator.
b. What modifications are required to make the circuit in Q. 4 (a) a practical integrator circuit.
c. Design a Schmitt trigger circuit using an ideal op amp operating with and -15 V , to have the upper and lower trigger points as +8 V and respectively. Also draw the output waveform if the input is a 10 V peak sinusoidal signal.
Q. 5 a. With a neat diagram explain the working of an R-2R ladder type D/A converter. What are its main advantages with respect to a weighted resistor D/A converter?
b. Draw the circuit of a monostable multivibrator using 555 timer IC, and design the values for the different components in the circuit so that the output pulse width is 0.2 msec .
(8)

PART (B)
Answer At least TWO questions. Each question carries 16 marks.
Q. 6 Perform the following conversions:
(i) $(756.75)_{10}=()_{2}$
(ii) $(101111.101)_{2}=()_{10}$ (iii) $(463.25)_{10}=()_{8}$
(iv) $(672.46)_{8}=()_{10}$
(v) $(4680.125)_{10}=()_{16}$ (vi) (9A8E.D) $)_{16}=()_{10}$
(vii) $(76 \mathrm{EF} . \mathrm{AB})_{16}=()_{8}($ viii $)(125.75)_{8}=()_{16}$
Q. 7 a. Implement the given function $f(A, B, C)=A+B C$ by using
(i) NAND gate
(ii) NOR gate
b. Draw the logic circuit to implement the OR function using only NAND gates.
c. Obtain the logic expression for the output X of the circuit in Fig.6, and simplify it using De Morgan's theorems.

Q. 8 a. Show how a 16 input multiplexer is used to generate the function $\mathrm{f}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\overline{\mathrm{A}} \overline{\mathrm{B}} \overline{\mathrm{C}} \mathrm{D}+\mathrm{BCD}+\mathrm{A} \overline{\mathrm{B}} \overline{\mathrm{D}}+\mathrm{AB} \overline{\mathrm{C}} \mathrm{D}$
b. Draw the truth table for 'DIFFERENCE' and 'BORROW' of a FULL SUBTRACTOR. From the truth table, obtain logic expressions for them. From these expressions realize the FULL SUBTRACTOR using logic gates.
(10)
Q. 9 a. Draw the circuit of a latch using two NOR gates and explain its operation. (4)
b. Draw the internal circuit of an edge triggered D flip-flop and explain its functioning using necessary waveforms.
c. Draw the circuit of a MOD-60 ripple counter to reduce 60 Hz to 1 Hz , using JK flip-flops and explain its operation with its state transition diagram.

