AMIETE – ET/CS/IT (NEW SCHEME) – Code: AE51/AC51

Subject: ENGINEERING MATHEMATICS - I

Time: 3 Hours

JUNE 2011

AC51) Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions, answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

 (2×10)

a. If in a determinant the corresponding elements of two rows (or columns) are proportional to each other, then the value of the determinant is

(A) unity	(B) zero
(C) infinity	(D) none of the above

- b. In case of matrix multiplication of two matrix A and B, if AB = 0 (where '0' stands for null matrix), it means that
 - (A) either A = 0 or B = 0
 (B) both of them '0'
 (C) does not necessary that either A = 0 or B = 0
 (D) none of the above
- c. If u = F(x y, y z, z x), then

(A) $\frac{\partial u}{\partial x} - \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$	(B) $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$
(C) $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} - \frac{\partial u}{\partial z} = 0$	(D) $\frac{\partial u}{\partial x} - \frac{\partial u}{\partial y} - \frac{\partial u}{\partial z} = 0$

- d. The Newton-Raphson method to find a root of the equation f(x) fails when
 - (A) For a particular value of $x = x_0$ (say), $f(x_0)$ becomes zero.
 - (B) For a particular value of $x = x_0$ (say), $f(x_0)$ becomes unity.
 - (C) For a particular value of $x = x_0$ (say), $f'(x_0)$ becomes zero. (where f'(x) in the first derivative of f w.r.t. x)
 - (**D**) For a particular value of $x = x_0$ (say), $f(x_0)$ becomes equal to $f'(x_0)$.

StudentBounty.com ∂М ∂N e. If $\frac{\overline{\partial y} - \overline{\partial x}}{N}$ is a function of x, alone say f(x), then integrating factor is (A) $e^{\int x dx}$ (C) $e^{\int f(x) dx}$ (**B**) $e^{\int y dy}$ (**D**) $e^{\int f(y) dy}$ f. The maximum value of $(3x^4 - 2x^3 - 6x^2 + 6x + 1)$ in the interval (0, 2) is **(A)** 1 **(B)** 21 (C) $\frac{1}{2}$ (D) None of the above g. Value of $\int_{0}^{1} dx \int_{0}^{x} e^{y/x} dy$ is (A) $\frac{1}{2}(e-1)$ **(B)** $\frac{1}{2}(1-e)$ **(C)** 1 (D) None of the above h. The value of $J_{\frac{1}{2}}(x)$ is

(A)
$$\sqrt{\left(\frac{2}{\pi x}\right)} \sin x$$

(B) $\sqrt{\left(\frac{2}{\pi x}\right)} \cos x$
(C) $\sqrt{\left(\frac{2}{\pi x}\right)} \sin x$
(D) $\sqrt{\left(\frac{2}{\pi x}\right)} \cos x$

i. Value of $\boxed{-\frac{1}{2}}$ is

(A)
$$\sqrt{\pi}$$
 (B) $-\sqrt{\pi}$
(C) $2\sqrt{\pi}$ (D) $-2\sqrt{\pi}$

j. A matrix 'A' is said to be idempotent matrix if

(A)
$$A^{T}A = I$$

(B) $A^{2} = A$
(C) $A^{K} = A$, K is any positive integer value
(D) $A = A^{T}$

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Answer any FIVE Questions out of EIGHT Questions.
Each question carries 16 marks.
Q.2 a. If
$$u = \sin^{-1} \left[\frac{x + y}{\sqrt{x} + \sqrt{y}} \right]$$
. Prove that
 $x^2 \frac{\partial^2 u}{dx^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{dy^2} = -\frac{\sin u \cos 2u}{4 \cos^3 u}$ (8)

- b. Find the shortest distance between the line y=10-2x, and the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1.$ (8)
- **Q.3** a. Using the transformation x + y = u, y = uv, show that $\iint [xy(1-x-y)]^{\frac{1}{2}} dxdy = \frac{2\pi}{105}$, integration being taken over the area of the triangle bounded by the lines x = 0, y = 0, x+y = 1. (8)
 - b. A rectangular box, open at the top is to have a volume of 32 c.c. Find the dimension of the box requiring least for material for its construction. (8)
- a. Find the eigen values and eigen vectors of the matrix **Q.4**

[1	1	3		
1	5	1	(8))
$\begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}$	1	1		

b. Test the consistency of the following system of equations and solve them if possible:

$$3x + 3y + 2z = 1$$

 $x + 2y = 4$
 $10y + 3z = -2$ (8)

- **Q.5** a. Find by the method of Regula Falsi a root of the equation $x^{3} + x^{2} - 3x - 3 = 0$ lying between 1 and 2. (8)
 - b. Perform three iterations of the Gauss-Seidel method for solving the system of equations

4	0	2	$\begin{bmatrix} x_1 \end{bmatrix}$		6	
0	5	2	x ₂	=	-3	
5	4	10	_x ₃ _		-3 11	

AE51/AC51/AT51 / IIINE - 2011AMIETE - ET/CS/IT (NEW SCHEME) 2

Take the components of the approximate initial vector as $x_i^{(0)} = \frac{b_i}{a_{ii}}, i = 1, 2$

Compare with the exact solution $\mathbf{x} = \begin{bmatrix} 1, -1, 1 \end{bmatrix}^T$.

Take the components of the approximate initial vector as
$$x_i^{(0)} = \frac{b_i}{a_{ii}}$$
, $i = 1, 2$
Compare with the exact solution $x = [1, -1, 1]^T$. (8)
Q.6 a. Solve $(x+1)\frac{dy}{dx} - y = e^{3x}(x+1)^2$ (8)
 $dy = y + x - 2$

b. Solve
$$\frac{dy}{dx} = \frac{y+x-2}{y-x-4}$$
 (8)

Q.7 a. Solve
$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 4y = 2x^2 + 3e^{-x}$$
 (8)

b. Find the general solution of the equation $y'' + 3y' + 2y = 2e^x$, using method of (8) variation of parameters.

Q.8 a. (i) If
$$f(x) = 0$$
 $-1 < x \le 0$
= x $0 < x < 1$

Show that
$$f(x) = \frac{1}{4}P_0(x) + \frac{1}{2}P_1(x) + \frac{5}{16}P_2(x) - \frac{3}{32}P_4(x) + \dots$$
 (4)

(ii) Prove that
$$\int J_3(x) dx + J_2(x) + \frac{2}{x} J_1(x) = 0$$
 (4)

b. Prove that
$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n$$
 (8)

a. Using Beta and Gamma functions show that for any positive integer 'm' Q.9 $\pi/2$

(i)
$$\int_{0}^{\pi/2} \sin^{2m-1}(\theta) d\theta = \frac{(2m-2)(2m-4)\dots 2}{(2m-1)(2m-3)\dots 3}$$
 (4)

(ii)
$$\int_{0}^{\pi/2} \sin^{2m}(\theta) d\theta = \frac{(2m-1)(2m-3)\dots 1}{(2m)(2m-2)\dots 2} \cdot \frac{\pi}{2}$$
(4)

b. Prove that

(i)
$$\beta\left(m,\frac{1}{2}\right) = 2^{2m-1}\beta(m,m)$$
 (4)

(ii)
$$|\overline{m}| (\overline{m + \frac{1}{2}}) = \frac{\sqrt{\pi}}{2^{2m-1}} |2m|$$
 (4)