AMIETE - ET (OLD SCHEME)

Student Bounty.com Code: AE27 **Subject: DIGITAL HARDWARE DESIGN** Time: 3 Hours Max. Marks: 100

JUNE 2011

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.

Q.1	Cl	Choose the correct or the best alternative in the following: (2×10)						
	a.	a. Horizontal and vertical formats are used in						
		(A) Register file(C) Counters	(B) ALU(D) Microprogram controller					
	b.	Product of sums is a Boolean expression containing terms.						
		(A) OR (C) NOR	(B) AND (D) NAND					
	c.	A system in which signals l	have values from a continuous set is					
		(A) Mixed(C) Analog	(B) Digital(D) All of above					
	d.	When two or more binary state variables change value in response to a change in an input variable is said to be condition and occurs in sequential circuit.						
		(A) Race, synchronous(C) Critical, asynchronous	(B) Race, asynchronous(D) Critical, synchronous					
	e.	Process statement in VHDL implements the following model						
		(A) Data flow model(C) Both (A) and (B)	(B) Structural model(D) Behavioral model					
	f.	Programmable Array Logic (PAL) has AND array and OR array						
		(A) Programmable, fixed(C) Programmable, program	(B) Fixed, Programmable mmable (D) Fixed, fixed					
A E 2 7	, II	INF - 2011	1 AMIETE - ET (OLD SCHEME	Ξ1				

- 0.3 a. Convert the following expression into sum of products and product of sums: x' + x(x + y')(y + z')**(4)**

c. Explain various computer aided design tools purposes.

- b. Simplify the following Boolean expressions, using three-variable Karnaugh's map. Simplify the following Boolean expressions, using three-variable Karnaugh's map. **(6)**
 - (i) xy + x'y'z' + x'yz'
 - (ii) A'B + BC' + B'C'
- c. Explain how functional decomposition is used in combinational circuits. Give an example. **(6)**
- **Q.4** a. Implement four variable decomposition chart for $f(w, x, y, z) = \sum (1,3,6,10,13,15)$ **(10)**

Q.2

(3)

(6)

(7)

- b. Mention various components of the following:
 - (i) Data subsystem
 - (ii) Control subsystem
- StudentBounts.com **Q.5** a. Explain binary encoder and binary decoder and give an example for illustration.
 - b. Design 16×1 multiplexer using 8×1 and 2×1 multiplexer. **(4)**
 - c. Design 4-bit bi-directional shift register and explain its functionality. **(6)**
- **Q.6** a. Compare and contrast the following modes used in VHDL: **(6)**
 - (i) Behavioral Model
 - (ii) Data Flow Model
 - (iii) Structural Model
 - b. Draw the 4×4 ROM MOS-implementation structure and explain different types of ROM modules? (10)
 - **Q.7** a. Explain synchronous and asynchronous sequential machine. Give an example for each. **(5)**
 - b. Reduce the number of states in the following state table and tabulate the reduced state table: **(5)**

Present	Next State		Output	
State	x = 0	x=1	x=0	x=1
a	f	b	0	0
b	d	c	0	0
c	f	e	0	0
d	g	a	1	0
e	d	С	0	0
f	f	b	1	1
g	g	h	0	1
h	g	a	1	0

- c. For the bit pattern, 1100 design Mealy machine and Moore machine. **(6)**
- **Q.8** a. Write a VHDL-program to implement full-adder using structural style-Draw the timing wave-form of its simulation results by modelling. considering any four cases. **(8)**
 - b. Draw ASM chart of a serial adder and synthesize the logic circuit. **(8)**
- **Q.9** a. An asynchronous sequential circuit is described by the excitation and output functions: **(8)**

$$m = x_1 x_2' + (x_1 + x_2') y$$

 $z = y$

Answer the following:

- (i) Draw the logic diagram of the circuit
- (ii) Derive transition table and output map
- (iii) Obtain two-state flow table
- (iv) Describe in words the behavior of the circuit.
- STANDENT BOUNTS, COM b. Explain the operation of microinstruction sequencing. Explain various cycles in microinstruction.
- c. Explain state assignment technique.

(4)