AMIETE - ET (OLD SCHEME)

Code: AE05 Time: 3 Hours

JUNE 2011

Student Bounts, com **Subject: BASIC ELECTR** Max. Marks

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

 (2×10)

- a. A load line is a plot that describes
 - (A) The I-V characteristics curve for a load resistor
 - **(B)** A driving circuit
 - (C) Both (A) and (B)
 - (D) Neither (A) nor (B)
- b. The output frequency of a full wave rectifier with a 60Hz sinusoidal input is
 - (**A**) 30 Hz

(B) 60 Hz

(C) 120 Hz

- **(D)** 0 Hz
- c. A diode limiting circuit
 - (A) Removes part of waveform
 - (B) Inserts a dc level
 - (C) Produces a output equal to the average value of the input
 - (**D**) Increase the peak value of the input
- d. A saturated bipolar transistors can be recognized by
 - (A) A very small voltage between the collector and emitter
 - (B) V_{CC} between collector and emitter
 - (C) A base emitter drop of 0.7V
 - **(D)** No base current
- e. In normal operation, the gate –source p-n junction for a JFET is
 - (A) reverse biased
- **(B)** forward biased
- (**C**) Either (**A**) or (**B**)
- (D) Neither (A) nor (B).
- f. An amplifier that operates in the linear region at all times is
 - (A) Class A

(B) Class AB

(C) Class B

(**D**) all of these answers

- g. In the common mode
 - (A) Both inputs are grounded
 - (B) The outputs are connected together
 - (C) An identical signal appears on both inputs
 - (D) The output signals are in phase
- h. In differentiator, the feedback element is a
 - (A) Resistor

(B) Capacitor

(C) Diode

- (D) Inductor
- i. An oscillator differs from an amplifier because
 - (A) It has a more gain
- **(B)** It requires no input signal
- (C) It requires no dc supply
- (D) It always has the same output

Shindent Bounty.com

- j. The basic difference between a series regulator and a shunt regulator is
 - (A) The amount of current that can be handled.
 - **(B)** The position of the control element.
 - (C) The type of sample circuit.
 - **(D)** The type of error detector.

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- Q.2 a. An n-p-n transistor with β = 150 is to operate in the common (grounded) base configuration. A dc power supply at V_S = \pm 12 V is available and with two external resistors. One connected between the collector and V_{CC} and the other between the emitter and V_{EE} , we want to keep the collector current I_C at 1.6 mA and the collector voltage V_C at 4 V. Find the values of the resistors, given that when V_{BE} =0.7 V, I_C =1.2 mA. The circuit operates at T=27° C.
 - b. For the circuit as shown in Fig.1, the diodes are identical and it is known that at V_D =0.65, I_D =0.5 mA. It is also known that the voltage across each diode changes by 0.1 V per decade change of current. Compute the value of R so that V_{out} =3 V. (4

Fig. 1

c. A circuit and its input waveform are shown in Fig.2. Compute and sketch the waveform for the output v_{out} .

Fig. 2

Q.3 a. For the three-stage amplifier as shown in Fig.3,

- (i) Find the voltage amplification and power gain of each stage in dB (ii) Find the overall voltage amplification and overall power gain of each stage in dB (8)
- b. For the JFET amplifier circuit in Fig. 4, prove that the voltage gain A_V depends only on the transconductance g_m and the value of the drain resistor R_D , that is, show that $A_V = -g_m R_D$. (8)

Fig. 4

(8)

(8)

Q.4 a. The Fig.5 shows a crystal oscillator and its equivalent circuit.

Fig. 5

Prove that $\omega_{0P} = \sqrt{\frac{C_1 + C_2}{LC_1C_2}}$

- b. Draw and explain the functional diagram of the 555 timer.
- Q.5 a Obtain input and output resistance in each, the current series and voltage shunt negative feedback topologies. (8)

- Fig. 6
- Student Bounty Com (i) Derive the closed-loop transfer function (ii) Derive an expression for the dc gain (iii) Derive an expression for the 3 dB frequency (iv) If $R_1 = 1 \text{ k}\Omega$, compute the values of R_f and C_f such that the circuit will have a dc gain of 40 dB and 1 kHz 3 dB frequency.
- **Q.6** a. For the op-amp as shown in Fig.7, the open-loop is 100,000.

Fig. 7

- (i) Find v_{in1} if v_{in2} =3 mV and v_{out} =5 V (ii) Find v_{in2} if v_{in1} =2 mV and v_{out} = -5 V (iii) Find v_{out} if v_{in1} =2 mV and v_{in2} = -3 mV.
- b. Design a monostable multivibrator using a 555 timer, a capacitor with value C=1 nF and appropriate resistor values to produce an output pulse of 20 μs duration. **(8)**
- **Q.7** a. Compare push pull and complimentary push pull power amplifiers. (8)
 - b. What value of R₁ is necessary in a 7805 regulator to provide a constant current of 1 A to a variable load that can be adjusted from $0 - 10\Omega$. **(8)**
- **Q.8** Derive the expression for hybrid -Π parameters of CE amplifier. **(8)**
 - b. Explain the race around condition in JK flip-flop and also, discuss the methods to avoid it. **(8)**
- **Q.9** Explain the operation of following circuit in Fig.8. **(8)**

b. Obtain minimal sum of product for the function given below:

$$F(w, x y, z) = \sum (0,2,3,6,7,8,10,11,12,15).$$
 (8)