Subject: CRYPTOGRAPHY \& NETWORK SECURITY

Time: 3 Hours

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. \qquad is designed to protect data from modification, insertion, deletion and replaying by an adversary.
(A) Confidentiality
(B) Authentication
(C) Data integrity
(D) Access control
b. The language that we commonly use can be termed as
(A) Pure text
(B) Simple text
(C) Normal text
(D) Plain text
c. What will be the value of $27 \bmod 5$?
(A) 2
(B) 0
(C) 1
(D) 3
d. At the encryption site, DES takes a 64-bit plaintext and creates \qquad bit cipher text
(A) 56
(B) 64
(C) 48
(D) 128
e. \qquad can issue digital certificates
(A) Government
(B) Bank
(C) CA
(D) Shopkeeper
f. \qquad is the most common authentication mechanism.
(A) Smart card
(B) Password
(C) PIN
(D) Biometrics
g. The final solution to the problem of key exchange is the use of \qquad
(A) passport
(B) digital envelope
(C) digital certificate
(D) message digest
h. In asymmetric key cryptography, \qquad keys are required per communicating party.
(A) 2
(B) 3
(C) 4
(D) 5
i. The message digest algorithm(s) \qquad
(A) MD5
(B) SHA-1
(C) Both (A) and (B)
(D) None of the above
j. \qquad increases the redundancy of plain text.
(A) Confusion
(B) Diffusion
(C) Both (A) and (B)
(D) Neither (A) nor (B)

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q. 2 a. What do you understand by security services? List and define five security services.
b. Define Chinese Remainder Theorem and its application? Using Chinese Remainder Theorem solve:
$x==2 \bmod 3$,
$x==3 \bmod 5$,
$x==4 \bmod 11$,
$x==5 \bmod 16$.
Q. 3 a. Distinguish between monoalphabetic and polyalphabetic cipher. Are all stream ciphers monoalphabetic? Explain.
b. A message has 2000 characters. If it is supposed to be encrypted using a block cipher of 64 bits, find the size of the padding and number of blocks.
Q. 4 a. What is double DES? What is kind of attack on double DES makes it useless?
b. Why does the round key generator need a parity drop permutation?
c. Describe the three attempted attacks on DES.
Q. 5 a. Define CFB and list its advantages and disadvantages.
b. Write the Encryption algorithm pseudocode for CFB mode.
Q. 6 a. Define MDC and MAC. Also distinguish between MDC and MAC.
b. Compare the compression function of SHA-512 without the last operation of final adding with a Feistel cipher of 80 rounds. Show the similarities and differences.
Q. 7 a. Compare and contrast attacks on digital signatures with attacks on cryptosystems.
b. What is KDC? List the duties of a KDC.
c. There are two nonces $\left(\mathrm{R}_{\mathrm{A}}, \mathrm{R}_{\mathrm{B}}\right)$ in Needham- Schroeder protocol, and only three nonces ($\mathrm{R}_{\mathrm{A}}, \mathrm{R}_{\mathrm{B}}, \mathrm{R}$) in the Otway-Ress protocol. Explain why there is need for extra nonce, R , in the second protocol?
Q. 8 a. Write short notes on the following:
(i) PGP
(ii) $\mathrm{S} / \mathrm{MIME}$
b. Compare and contrast key management in PGP and S/MIME.
Q. 9 a. Define and explain SSL. Also state the purpose of four protocols defined in SSL.
b. Show how SSL or TLS reacts to brute-force attack can an intruder use an exhaustive computer search to find encryption key in SSL or TLS? Which protocol is more secure in this respect SSL or TLS?

