NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

 (2×10)

- a. Which of the following is not $O(n^2)$
 - (A) n+1000n

(B) n^{1.9999}

(C) $10^5 + 2^6$ n

- **(D)** n^3/\sqrt{n}
- b. The total number of comparisons in bubble sort is
 - (A) $O(n \log n)$

(B) O(n)

(C) $O(n^2)$

- **(D)** None of the above
- c. We employ dynamic programming approach when
 - (A) It gives optimal solution
 - **(B)** The solution has optimal substructure
 - (C) It is faster than Greedy technique
 - **(D)** None of the above
- d. Find the correct answer for the increasing order of complexity
 - (A) n^2 , $n \log n$, n

(B) $n, n \log n, n^2$

(C) $n \log n, n^2, n$

- (**D**) n^2 , n, $n \log n$
- e. A spanning tree contains
 - (A) all the edges of the graph
- **(B)** all the vertices of the graph

- (C) both (A) & (B)
- **(D)** None of the above.

- (A) If it is as hard as any problem in NP
- (B) A non-polynomial time algorithm has been discovered
- (C) A polynomial time algorithm can exist but needs a parallel computer
- **(D)** There is Greedy solution to the problem
- Student Bounts, com g. Which of the following basic algorithms can be used to most efficiently determine the presence of a cycle in a graph?
 - (A) Minimum cost spanning tree
- (B) Ford Fulkerson algorithm
- (C) Breadth first search
- (D) Depth first search
- h. n-Queens problem is solved by
 - (A) Greedy approach
- (B) Dynamic programming

(C) Backtracking

- (D) Branch-and-bound
- i. The average case complexity for quick sort is
 - (A) O(n)

(B) $O(n^2)$

(C) $O(n \log n)$

- (**D**) $O(\log n)$
- j. In AVL trees, if there are n nodes the depth of the tree is
 - (A) O(n)

(B) $O(n \log n)$

(C) $O(\log n)$

(**D**) None of the above

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- **Q.2** a. Write a Euclid's algorithm to determine the GCD of two non-negative numbers? **(8)**
 - b. Draw the sequence of steps for designing and analyzing an algorithm. **(4)**
 - c. In the following directed graph, draw its Adjacency matrix and Adjacency list of the graph. **(4)**

a. Write a pseudocode of recursive and non-recursive algorithm for Fibonacci Q.3 series. **(8)**

(i)
$$T(n) = 9T(n/3) + n$$

(ii)
$$T(n) = T(2n/3) + 1$$

$$(4 \times 2 = 8)$$

- Student Bounty.com a. There are two sorted arrays of size m and n. Write an efficient algorithm to 0.4 merge two array into another array of size m+n. The resultant array should be sorted. Discuss the time complexity of the algorithm.
 - (8)b. Explain the sequential search in detail with example.
- **Q.5** What are the main facts about Depth First Search (DFS) and Breadth First Search (BFS)?
 - b. Write a pseudocode for topological sort? If there are V vertices in a graph, what is a running time of the algorithm?

Find the result in the above directed graph by applying topological sort.

- a. (i) Explain single R rotation, single L rotation, double LR rotation, double RL **Q.6** rotation in AVL trees with an example.
 - (ii) Draw the diagram of the insertion of 5 and 6 given below AVL tree. (4)

- b. Explain the algorithm of Gaussian elimination for solving system of linear equations. **(8)**
- a. Consider the following graph G = (V, E). All nodes have infinite cost except **Q.7** the source node s, which has 0 cost? Using the Dijkstra's Algorithm find out the single-source shortest path. **(8)**

b. Solve the knapsack problem, using bottom-up dynamic programming algorithm with the capacity w = 10. Compute the optimal solution. (8)

Item	1	2	3	4
Value	10	40	30	50
Weight	5	4	6	3

- Q.8 a. What is hashing? What are the various methods of handling the collision? (8)
 - b. Using the decision trees, design the sorting algorithm. (8)
- Q.9 a. Explain the backtracking and branch-bound in detail. (8)
 - b. Write short notes on any **TWO** of the following:-
 - (i) Bisection method
 - (ii) Method of false position
 - (iii) Newton's method

(8)

Student Bounty Com