AMIETE -CS (OLD SCHEME)

Code: AC15 Time: 3 Hours Subject: COMPUTER GRAP Max. Marks: N

NOTE: There are 9 Questions in all.

- StudentBounty.com • Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following: (2×10)

- a. Coloured CRT create image of
 - (A) single colour
 - (B) multiple colour
 - (C) single colour with no intensity information
 - (**D**) no colours

b. Boundary fill and flood fill algorithm begins with a

(A) Fruit	(B) Leaf
(C) Picture	(D) Seed

c. A point (x, y) is rotated about origin by 30° using the transformation Х $= \mathbf{R} | \mathbf{y}$ ý

Indentify the R matrix from following where $a = \sqrt{3}/2$ b = 1/2

(A)	a b	b a	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	(B)	a b	-b a 0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$
	0	0	1		0	0	1
(C)	a	b	0		a	-b b 0	0
(C)	- b	a	0	(D)	a	b	0
	0	0	1_		0	0	1

d. A polygon is called ______ if the line joining any two exterior points of a polygon lies completely inside the polygon

(A) windowing	(B) concave
(C) convex	(D) window

1

AC15 / IIINE - 2011

AMIETE CS (OI D SCHEME)

e. Given a rectangular window P(0, 0), Q(30, 0), R(30, 20), S(0, 20), what outcode of an end point A(40, 10) of a line. The outcode format is L,R,B,
(B) 0100
(D) 1000
(D) 1000

(A) 1010	(B) 0100
(C) 0110	(D) 1000

(A) center of attraction	(B) centre of projection
(C) line of control	(D) none

g. A Bezier cubic curve with control points P_0, P_1, P_2, P_3 is defined by the equation $f(u) = \sum_{i=0}^{3} P_i B_i^3(u)$. Identify B_2^3 from the following:

(A)	$(1-u)^3$	(B)	u ³
(C)	$3u(1-u)^2$	(D)	$3u^2(1-u)$

h. If we use 12-bit pixel address in a lookup table representation, how many bytes does the lookup table occupy

(A) 4096	(B) 2048
(C) 1024	(D) None

i. Cohen-Sutherland algorithm is used for

(A) Polygon clipping	(B) Graph colouring
(C) Line clipping	(D) 3D Modelling

j. Lambert's cosine law involves the angle of

(A) refraction.	(B) illumination.
(C) normal with the surface.	(D) reflection.

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2	a.	Explain how shadow mask method generate colors in raster scan system?	(4)
	b.	Describe the working of Light Pen.	(4)
	c.	Write the steps to plot a line whose 2 end points are given as (10, 5) and (15, 9) using Bresenham's line algorithm.	d (8)
Q.3	a.	What steps are required to scan-convert a polygonal area using the scan line algorithm?	1 (7)
	b.	Describe Midpoint subdivision clipping algorithm.	(9)
۸/15	/ 11		L/

		5	
Q.4	a.	Perform a 45° rotation of triangle A(0,0), B(1,1) and C(5,2) above $P(-2,-2)$. Find a transformation which aligns the vector V = I+J+K with the vector N = 2I–J–K. Develop the transformation matrix for generating a parallel projection.	CENTROL (8)
	b.	Find a transformation which aligns the vector $V = I+J+K$ with the vector $N = 2I-J-K$.	or (8)
Q.5	a.	Develop the transformation matrix for generating a parallel projection.	(4)
	b.	What do you understand by principal vanishing point? Describe the one principal-vanishing-point-perspective transformation.	e- (4)
	c.	Write an algorithm for traversing a BSP tree.	(8)
Q.6	a.	Write an expression for the Bezier curve in terms of parameter t and the control points P_1, P_2, P_3 and P_4 . Using this show that the Bezier curve	e
		ends in point P_4 with slope given by line P_3P_4 .	(8)
	b.	What is a Bezier curve? Give the polynomial of degree n representing Bezier curve.	a (8)
Q.7	a.	Explain with the help of examples the sweep representation an constructive solid geometry methods for solid geometry.	d (8)
	b.	Explain briefly the z-buffer algorithm. How does the z-buffer algorithm determine which surfaces are hidden?	n (8)
Q.8	a.	Develop the specular illumination model for rendering a surface. How is different from the diffuse model?	it (8)
	b.	Describe how phong shading model is different from Gourad shadin model? Which one is better to use?	g (8)
Q.9	a.	Explain what do you understand by the terms fractal dimension, initiate and generator. Illustrate with examples.	or (8)
	b.	Write a note on Morphing.	(8)

AC15 / ILINE - 2011

2