NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q. 1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. Let $S=\{a, b, \phi\}$ then number of elements in power set $P(P(S))$ is
(A) 8
(B) 16
(C) 256
(D) 512
b. Number of reflexive relations that can be defined on a set $A$ with 4 elements is
(A) 1024
(B) 4096
(C) 16
(D) 2048
c. How many nodes of degree two you can find in a complete binary tree T having 20 leaf nodes?
(A) 8
(B) 18
(C) 19
(D) 20
d. Which of the following production rule generates a language in $\{0,1\}$ that terminates in substring " 01 ".
(A) $P=\{S \rightarrow 0 S, S \rightarrow 1 S, S \rightarrow 01\}$
(B) $\mathrm{P}=\{\mathrm{S} \rightarrow 01 \mathrm{~S}, \mathrm{~S} \rightarrow 10 \mathrm{~S}, \mathrm{~S} \rightarrow 1\}$
(C) $\mathrm{P}=\{\mathrm{S} \rightarrow 0 \mathrm{~A}, \mathrm{~A} \rightarrow 1 \mathrm{~S}, \mathrm{~S} \rightarrow 01\}$
(D) $\mathrm{P}=\{\mathrm{S} \rightarrow 00 \mathrm{~S}, \mathrm{~S} \rightarrow 11 \mathrm{~S}, \mathrm{~S} \rightarrow 01\}$
e. In how many ways can a party of 7 persons arrange themselves around a circular table?
(A) 7 !
(B) 8 !
(C) 6 !
(D) 7
f. A bounded Poset has
(A) Only least element
(B) Only greatest element
(C) Both least and greatest element
(D) Only minimal element
g. The proposition $(p \vee(p \rightarrow q))$ is equivalent to which of the following?
(A) $\neg \mathrm{p} \vee(\mathrm{p} \rightarrow \mathrm{q}))$
(B) $q$
(C) F
(D) T
h. Converse of the statement 'I stay only if you go' is
(A) I shall not stay if you don't go.
(B) I stay if you don't go.
(C) I shall not stay if you go.
(D) If you go then I shall not stay.
i. A regular language is produced by
(A) Type I grammar
(B) Type II grammar
(C) Type III grammar
(D) Type 0 grammar
j. Two matrices A and B of order $\mathrm{m} \times \mathrm{n}$ and $\mathrm{p} \times \mathrm{q}$ respectively, are said to be conformal for multiplication if
(A) m is equal to p
(B) n is equal to p
(C) n is equal to q
(D) m is equal to q


## Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q. 2 a. Let $A=\{a, b, c, d, e\}$ and $R=\{(a, a),(a, b),(b, c),(c, e),(c, d),(d, e)\}$ then compute (i) $R^{2}$ and (ii) $R^{\infty}$
b. Prove that the relation "congruence modulo 3" is an equivalence relation in the set of integers.
Q. 3 a. Show that $n^{3}+2 n$ is divisible by 3 .
b. Prove that the sum of two rational numbers is a rational number. Using the proof show that the sum of a rational number and an irrational number is an irrational number.
Q. 4 a. Let $L$ be a distributive Lattice. For any $a, b, c \in L$, show that if $a \wedge b=a \wedge c$ and $a \vee b=a \vee c$ then $b=c$
b. Simplify the Boolean function: $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\sum(0,1,2,3,4,6)$
Q. 5 a. Without using truth table, prove De Morgan's law of addition and multiplication of Boolean variables x and y i.e.
(i) $(x+y)^{\prime}=x^{\prime} \bullet y^{\prime}$
(ii) $(x \bullet y)^{\prime}=x^{\prime}+y^{\prime}$
b. Prove that $\mathrm{p} \rightarrow \mathrm{q} \equiv \neg \mathrm{p} \vee \mathrm{q}$
Q. 6 a. Find minimum spanning tree using Krushkal's algorithm of the following graph.

b. Define the following terms: Quotient graph, Bipartite graph, Regular graph.
Q. 7 a. State and prove Pigeonhole principle.
b. In a class there are 35 girls and 25 boys. 5 students are selected at random from the class. What is the probability that out of five at least two are girl?
Q. 8 a. State and prove pumping lemma for regular language.
b. Simplify the following FSM.

Q. 9 Write a short note on the following:
(i) Transitive Closure
(ii) Principle of Mathematical Induction
(iii) Isomorphic graph
(iv) Types of Grammar

