AMIETE - CS (OLD SCHEME)

Code: AC10 **Time: 3 Hours**

JUNE 2011

NOTE: There are 9 Questions in all.

- StudentBounts.com • Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

 (2×10)

Subject: DISCRETE STRUCTURES

a. Let $S = \{a, b, \phi\}$ then number of elements in power set P(P(S)) is

(A) 8	(B) 16
(C) 256	(D) 512

b. Number of reflexive relations that can be defined on a set A with 4 elements is

(A) 1024	(B) 4096
(C) 16	(D) 2048

c. How many nodes of degree two you can find in a complete binary tree T having 20 leaf nodes?

(A) 8	(B) 18
(C) 19	(D) 20

d. Which of the following production rule generates a language in $\{0, 1\}$ that terminates in substring "01".

(A) $P = {S \rightarrow 0S, S \rightarrow 1S, S \rightarrow 01}$	(B) $P = {S \rightarrow 01S, S \rightarrow 10S, S \rightarrow 1}$
(C) P = {S \rightarrow 0A, A \rightarrow 1S, S \rightarrow 01}	(D) P = {S \rightarrow 00S, S \rightarrow 11S, S \rightarrow 01}

e. In how many ways can a party of 7 persons arrange themselves around a circular table?

(A) 7!	(B) 8!
(C) 6!	(D) 7

f. A bounded Poset has

AC10 / ILINE - 2011	1	
(C) Both least and g	greatest element (D) Onl	y minimal element
(A) Only least elem	nent (B) Onl	y greatest element

www.StudentBounty.com Homework Help & Pastpapers

g.	The proposition	$(p v (p \rightarrow q))$	is equivalent to	which of the	following?
----	-----------------	---------------------------	------------------	--------------	------------

$(\mathbf{A}) \neg p \lor (p \rightarrow q))$	(B) q
(C) F	(D) T

h.	Converse of the statement	'I stay only if you go' is	
----	---------------------------	----------------------------	--

		valent to which of the following?
g.	The proposition $(p \lor (p \rightarrow q))$ is equi	valent to which of the following?
	(A) ¬p v (p→q)) (C) F	(B) q (D) T
h.	Converse of the statement 'I stay on	ly if you go' is
	(A) I shall not stay if you don't go.(C) I shall not stay if you go.	(B) I stay if you don't go.(D) If you go then I shall not stay.
i.	A regular language is produced by	I
	(A) Type I grammar(C) Type III grammar	(B) Type II grammar(D) Type 0 grammar

j. Two matrices A and B of order m x n and p x q respectively, are said to be conformal for multiplication if

(A) m is equal to p	(B) n is equal to p
(C) n is equal to q	(D) m is equal to q

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2	a.	Let A = {a, b, c, d, e} and R = {(a, a), (a, b), (b, c), (c, e), (c, d), (d, e)} then compute (i) R^2 and (ii) R^{∞}	(8)
	b.	Prove that the relation "congruence modulo 3 " is an equivalence relation in the set of integers.	(8)
Q.3	a.	Show that $n^3 + 2n$ is divisible by 3.	(8)
	b.	Prove that the sum of two rational numbers is a rational number. Using the proof show that the sum of a rational number and an irrational number is an irrational number.	(8)
Q.4	a.	Let L be a distributive Lattice. For any a, b, $c \in L$, show that if $a \wedge b = a \wedge c$ and $a \vee b = a \vee c$ then $b = c$ ((8)
	b.	Simplify the Boolean function: $F(x, y, z) = \sum (0, 1, 2, 3, 4, 6)$	(8)
Q.5	a.	Without using truth table, prove De Morgan's law of addition and multiplication of Boolean variables x and y i.e. (i) $(x + y)' = x' \bullet y'$	
		(ii) $(x \bullet y)' = x' + y'$	(8)
	b.	Prove that $p \to q \equiv \neg p \lor q$ ((8)

2

AMIETE - CC (OI D CCHEME)

www.StudentBounty.com Homework Help & Pastpapers

StudentBounts.com a. Find minimum spanning tree using Krushkal's algorithm of the following **Q.6** graph.

- b. Define the following terms: Quotient graph, Bipartite graph, Regular graph. (6)
- **Q.7** a. State and prove Pigeonhole principle.
 - b. In a class there are 35 girls and 25 boys. 5 students are selected at random from the class. What is the probability that out of five at least two are girl? (8)
- **Q.8** a. State and prove pumping lemma for regular language. (8)
 - b. Simplify the following FSM.

- Q.9 Write a short note on the following:
 - (i) Transitive Closure
 - (ii) Principle of Mathematical Induction
 - (iii) Isomorphic graph
 - (iv) Types of Grammar

 (4×4)

AC10 / IIINE - 2011

2

(8)

(8)