AMIETE - CS/IT (OLD SCHEME)

Code: AC06 / AT06 Time: 3 Hours

StudentBounty.com Subject: DATA STRUCTURES & ALGORITHM DESIGN

NOTE: There are 9 Questions in all.

- Ouestion 1 is compulsory and carries 20 marks. Answer to 0.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the 0.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

 (2×10)

a. f(n) is O(g(n)) if there exists positive numbers c and N such that ------ for all $n \ge N$

(A) $f(n) \leq cg(n)$	(B) $f(n) = cg(n)$
(C) $f(n) \ge cg(n)$	(D) $f(n) < > cg(n)$

b. Evaluate the following arithmetic expression written in postfix form 1273 - /215 + * + is

(A)	12	(B)	14
(C)	16	(D)	15

- The maximum level (l_{max}) and minimum level (l_{min}) that is possible for a binary tree with *n* nodes are c.
 - (A) $l_{max} = n + 1$ and $l_{min} = [log_2(n+1) + 1]$
 - **(B)** $l_{max} = n 1$ and $l_{min} = [log_2(n+1) 1]$
 - (C) $l_{max} = n + 1$ and $l_{min} = [log_2(n+1) 1]$
 - (**D**) $l_{max} = n 1$ and $l_{min} = [log_2(n+1) + 1]$
- d. Instead of searching the locations with address like h, h+1, h+2, ..., h + n, search is done on locations with address like h, h+1, h+4, h+9, ..., $h+i^2$. This technique is termed as:

(A) Double hashing	(B) Quadratic hashing
(C) Clustered hashing	(D) None of the above

e. Average case and worst case complexity of selection sort is :

(A) $O(n^2)$, $O(nlogn)$	(B) O(nlogn), O(n^2)
(C) $O(n^2), O(n^2)$	(D) O(nlogn), O(nlogn)

AC06/AT06 / JUNE - 2011

AMIETE - CS/IT (OLD SCHEME)

1

SugentBounty.com f. Depth First Search algorithm uses the following data structure

(A) Linked List	(B) Queue
(C) Tree	(D) Stack

g. Activation records are maintained during the following :

(A)	Iteration	(B)	Recursion
(C)	Sorting	(D)	Searching

h. Maximum number of pointers to be changed in doubly linked list are :

(A) 3	(B) 2
(C) 4	(D) NULL

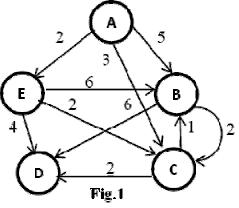
i. First visit root node T, then traverse left sub-tree of T and finally traverse right sub-tree of T is defined as

(A) Reverse order traversal	(B) Post order traversal
(C) Inorder traversal	(D) Preorder traversal

j. ----- is an in-place sort that requires O(n log n) operations regardless of the order of input.

(A) Heap sort	(B) Quick sort
(C) Binary sort	(D) Selection sort

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

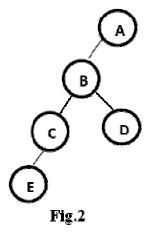

Q.2	a.	Define abstract data type and give an example for illustration.	
	b.	Write an algorithm to implement polynomial representation using arrays.	(5)
	c.	Explain Big-O notation. Give the rate of growth of common comput functions and give its graphical plot.	ting (5)
	d.	Explain the working of recursion.	(2)
Q.3	a.	Consider a doubly linked list with the following elements: 20, 30, 40, 12, 50 60, 140, 80, 130, 100 Write an algorithm to delete maximum and minimum values from doubly lin list.	(6) ked

AC06/AT06 / JUNE - 2011 2 AMIETE - CS/IT (OLD SCHEME)

> www.StudentBounty.com nework Help & Pastpa

		Still	
	h	Define sparse matrix. Give the address calculation in upper-triangulation ma	6) (6) (4) (6)
	υ.	for the following:	°94
		(i) Row-major order (ii) Column-major order	(6)
	c.	Compare linked list and array representation of stack and queue.	(4)
Q.4	a.	Consider the algebraic expression $E = (2x + y) (5a - b)^3$ (i) Draw a tree T for the expression E (ii) Find the preorder traversal of the tree T drawn in (i).	(6)
	b.	Write an algorithm to display all the nodes at level <i>i</i> in a binary tree.	(6)
	c.	Draw the structure of threaded binary tree. Give its advantages over binary	trees. (4)
Q.5	a.	Give an example of the following AVL operations:(i) LL Rotation(ii) LR Rotation(iii) RL Rotation	
		(iv) RR Rotation	(8)
	b.	Define heaps and priority queues. Give their applications.	(4)
	c.	Give the time complexity of the following tree search algorithms (i) Binary search tree (ii) Heaps	
		(iii) AVL tree (iv) B- tree	(4)
Q.6	a.	Write algorithm for quick sort and give its complexity analysis.	(6)
	b.	Explain various types of hashing and give an example for each.	(7)
	c.	Compare the performance of selection sort and insertion sort.	(3)
Q.7	a.	Give the complexity analysis of Dijkstra's shortest path algorithm.	(3)

b. For the directed graph given in Fig.1, find Dijkstra's shortest path between node *A* and node *D*. (5)



Give sequence of steps to find shortest path. AC06/AT06 / JUNE - 2011 3

AMIETE - CS/IT (OLD SCHEME)

www.StudentBounty.com Homework Help & Pastpapers

- c. Write the Kruskal's algorithm for MST. Give its complexity.
- d. Explain various ways to represent graphs.
- StudentBounty.com **Q.8** a. Write an algorithm to merge two singly linked lists. The final list should contain one element from list L1 and second element from list L2 and so on.
 - b. Give the representation of polynomial addition using linked list. (4)
 - c. Give the application of circular linked list and its representation. (4)
- a. Draw internal memory representation for the following tree (Fig.2). Q.9 (9)

Give representation for the following:

- (i) Sequential
- (ii) Linked
- (iii) Threaded linked representation
- b. Write an algorithm to search an element in B-Tree. Give its complexity. (7)

AC06/AT06 / JUNE - 2011

AMIETE - CS/IT (OLD SCHEME)

4