DipIETE - ET/CS (NEW SCHEME) - Code: DE58 / DC58

Subject: LOGIC DESIGN

Time: 3 Hours
DECEMBER 2011
Max. Marks: 100
NOTE: There are 9 Questions in all.

- Please write your Roll No. at the space provided on each page immediately after receiving the Question Paper.
- Question 1 is compulsory and carries 20 marks. Answer to $\mathbf{Q} .1$ must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q. 1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. Parity method is used to
(A) correct an error
(B) detect an error
(C) detect and correct an error
(D) none of the above
b. According to Boolean theorem $(\overline{\mathrm{A}}+\mathrm{B})(\mathrm{A}+\mathrm{B})=$
(A) B
(B) A
(C) $\bar{A} B$
(D) AB
c. The synchronous inputs in JK flipflop are
(A) J and K
(B) clock and clock
(C) Preset and clear
(D) none of the above
d. The number 11010 is a signed binary number in 2's complement system, the decimal value of this number is
(A) -8
(B) -6
(C) 26
(D) 10
e. If $t_{p d}=12 \mathrm{~ns}$ of a J-K flip flop, the largest MOD counter that can be constructed to operate upto 10 MHz is
(A) MOD 8
(B) MOD 12
(C) MOD 4
(D) MOD 16
f. The number of inputs and outputs of a decoder that accepts 64 different input combinations
(A) 64 and 1
(B) 8 and 8
(C) 8 and 64
(D) 6 and 64
g. An 80 KHz square wave clock pulses applied to 4 -bit synchronous counter. The output frequency of last flipflop is
(A) 10 KHz
(B) 20 KHz
(C) 5 KHz
(D) 1.28 MHz
h. A certain memory stores 8 K sixteen bit words. The number of data input and address lines are
(A) 16 data inputs \& 8 address lines
(B) 16 data inputs \& 13 address lines
(C) 8 data inputs \& 13 address lines
(D) 13 data inputs \& 16 address lines
i. Refreshing of memory is required in
(A) SRAM
(B) DRAM
(C) PLD
(D) RAM
j. The input frequency of ring counter is 25 KHz , then the output frequency for 5 -bit ring counter is
(A) 5 KHz
(B) 50 KHz
(C) 780 Hz
(D) 2.5 KHz

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q. 2 a. What is a digital system? Mention the advantages and disadvantages of digital techniques.
b. Perform the following conversions
(i) $(205)_{10}=(?)_{2}$
(ii) $(6254)_{8}=(?)_{10}$
(iii) $(67 \mathrm{~A})_{16}=(?)_{8}$
(iv) $(1 \mathrm{~A} 3 . \mathrm{F})_{16}=(\text { ? })_{10}$
Q. 3 a. Show that how NOR gates is a universal gate.
b. Draw the circuit diagram of 4-bit parity generator and explain it.
c. Determine the minimum expression for the K-map shown in Fig.1.

CD				
AB	00	01	11	10
00	1	1	1	1
01	1	1	0	0
	11	0	0	0
10	1			
	0	0	1	1

Fig. 1
Q. 4 a. Explain Race around condition occurs in Flip-Flop. How it can be avoid or minimize it.
b. With neat internal circuitry of the negative edge triggered JK flip flops explain its operation.
Q. 5 a. Perform followings using 2's complement method
(i) $(01001)_{2}-(10100)_{2}$
(ii) $(100101)_{2}-(100100)_{2}$
b. Design a full adder using decoder.
c. Draw the circuit diagram of 8 bit parallel adder.
Q. 6 a. Design a synchronous counter using T-FF that counts from 0111 to 0010.
b. Design up/down 4 bit binary ripple counter.
Q. 7 a. Compute the condition when De-MUX behave as a decoder. Realize full subtracter using De-Multiplexers.
b. Design 8:1 multiplexer using NAND gates.
Q. 8 a. Design a 4 bit bi-directional shift register using DFF.
b. Design 4 bit (serial $\mathrm{In} /$ Parallel out shift register), write the truth table with relevant diagram after 5 clock pulses.
Q. 9 a. With neat diagram explain RAM architecture.
b. Design a combinational circuit using a ROM that accepts a 3-bit number and generates an output binary number equal to the square of the input number. (8)

