Subject: ANALOG ELECTRONICS

Time: 3 Hours

DECEMBER 2011

NOTE: There are 9 Questions in all.

- Please write your Roll No. at the space provided on each page immediately after receiving the Question Paper.
- Question 1 is compulsory and carries 20 marks. Answer to $\mathbf{Q} .1$ must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. The output voltage of a CE amplifier with respect to its input voltage is
(A) amplified
(B) inverted
(C) 180° out of phase
(D) all of the above
b. A transistor has $\mathrm{h}_{\mathrm{fe}}=27$ and its h_{fc} will be
(A) -0.96
(B) 0.96 .
(C) -0.27
(D) -0.28
c. A transistor switch will be biased to work in its \qquad region of operation.
(A) Cut-off and Active
(B) Cut-off and Saturation
(C) Active and Saturation
(D) None of the above
d. The drain to source current of an n - channel depletion MOSFET has
(A) Ids=0 at $\mathrm{Vgs}=0$
(B) Ids=negative maximum at $\mathrm{Vgs}=0$
(C) Ids=positive maximum at $\mathrm{Vgs}=0$
(D) Ids is independent of Vgs
e. Which of the following provides least distortion?
(A) Class A
(B) Class B
(C) Class AB
(D) Class C
f. Due to capacitances within an op-amp, the gain of an op-amp \qquad at higher frequencies
(A) decreases
(B) increases
(C) neither decreases or increases
(D) infinity
g. Op-amps can be used for amplifying
(A) AC inputs only
(B) DC inputs only
(C) both (A) \& (B)
(D) None of the above
h. A Schmitt trigger uses
(A) negative feedback
(B) positive feedback
(C) both positive and negative feedback
(D) no feedback
i. An astable 555 timer has the following number of stable states
(A) 0
(B) 1
(C) 2
(D) 3
j. The ADC which completes n-bit conversion in n-clock periods is
(A) Flash
(B) dual-slope
(C) Successive approximation
(D) servo tracking

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q. 2 a. List the basic process used in the silicon planar technology
b. Sketch the cross-sectional structure of
(i) Multi-emitter transistor
(ii) Complementary MOSFET (CMOS)
c. Describe the oxidation process in detail.
Q. 3 a. Explain the need for coupling and bypass capacitors in transistor circuits
b. Sketch the h-parameter equivalent circuit of CE configuration and the parameters for transistor shown in Fig. 1 are, $\mathrm{R}_{1}=68 \mathrm{k} \Omega, \quad \mathrm{R}_{2}=56 \mathrm{k} \Omega$, $\mathrm{R}_{\mathrm{C}}=3.9 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{E}}=4.7 \mathrm{k} \Omega$, $\mathrm{R}_{\mathrm{L}}=82 \quad \mathrm{k} \Omega \quad$ and $\mathrm{h}_{\mathrm{ie}}=2.1 \mathrm{k} \Omega, \quad \mathrm{h}_{\mathrm{fe}}=75$ $\mathrm{h}_{\mathrm{oe}}=1 \mu \mathrm{~s}$ (μ mho or μ Semen). Calculate
(i) input impedance
(ii) output impedance
(iii) voltage gain operation of an n-type enhancement mode MOSFET
b. For the JFET circuit shown in Fig.2, find $V_{G}, I_{D}, V_{G S}$ and $V_{D S}$, if $V_{P}=-4 V$ and $V_{D D}=16 \mathrm{~V}$.

Fig. 2
Q. 5 a. Explain with circuit the operation of optocoupler. What are its applications?(8)
b. The class-B power amplifier circuit dissipates 4 W in the 16Ω load. If $\mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}$ and transformer efficiency is 80% find
(i) AC resistance offered by the transformer primary (r_{L})
(ii) The voltage appears across the collector of $\mathrm{Q}_{2}\left(\mathrm{~V}_{\mathrm{CE}} \max \right)$
(iii) Peak transistor current (Ip)
(iv) Power dissipation in each transistor $\left(\mathrm{P}_{\mathrm{T}}\right)$
Q. 6 a. Derive an expression for voltage gain of non inverting amplifier
b. Discuss briefly the following terms with respect to op-amp
(i) Input bias current
(ii) Input off-set voltage
(iii) Slew rate
(iv) Power Supply Rejection Ratio (PSRR)
c. For a non-inverting op-amp with $R_{1}=1 \mathrm{k} \Omega, R_{f}=10 \mathrm{k} \Omega$. Calculate maximum output offset voltage $\left(\mathrm{V}_{\text {OT }}\right)$ if $\mathrm{V}_{\text {ios }}=10 \mathrm{mv}$ and $\mathrm{I}_{\mathrm{B}}=300 \mathrm{nA}$
Q. 7 a. List the important features of instrumentation amplifier
b. With the help of block diagram explain the operation of
(i) Precision full wave rectifier
(ii) Sample and hold circuit
Q. 8 a. Explain, with the help of waveforms and circuit diagram, the operation of a square wave generator using op-amp.
b. Explain the operation of manostable multivibrator using 555 timer and derive an expression of its time delay
Q. 9 a. What are the advantages of R-2R ladder DAC, explain its operation with block diagram
b. With the help of block diagram and waveform explain the operation of Dual Slope type ADC.

