ROLL NO.

Subject: DIGITAL SIGNAL PROCESSIN **Code: AE77/AC77**

AMIETE - ET/CS (NEW SCHEME)

DECEMBER 2011 Time: 3 Hours Max. Marks: 100

NOTE: There are 9 Questions in all.

- Please write your Roll No. at the space provided on each page immediately after receiving the Question Paper.
- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question

carries 16 marks. Any required data not explicitly given, may be suitably assumed and stated.		
Q.1	Choose the correct or the best alternative in the following: (2×10)	
	a. In high-speed filtering applications	
	(A) parallel realization is preferred.(C) linear realization is preferred.	(B) cascaded realization is preferred.(D) none of the above.
	b. Discrete Fourier Transform exists only for signals that are	
	(A) periodic(C) both (A) and (B)	(B) absolutely summable(D) causal
	c. The Fourier transform of impulse response of a system is known as its	
	(A) time response(C) magnitude response	(B) frequency response(D) phase response
	d. If the R is the range of analog quantity to be quantized and b is the binary word size then quantization step size is	
	(A) R/2b (C) 2R/ b	(B) R/2 ^b (D) R ² /2b
	e. Phase response of the Fourier transform of a real signal is	
	(A) symmetric with frequency(C) anti-symmetric with frequency	(B) bounded for positive frequency(D) bounded for negative frequency
	f. First order LTI system will behave a	as a filter.
	(A) low-pass but not high pass(C) band-pass	(B) high-pass but not low pass(D) both low pass and high pass

Student Bounty Com Subject: DIGITAL SIGNAL PROCESSIN **Code: AE77/AC77**

- Total number of complex additions required in radix-2FFT is
 - (A) $N \log_2 N$

(B) $(N/2) \log_2 N$

(C) $N / (log_2 N)$

- **(D)** none of the above
- h. The circular convolution is known as
 - (A) aperiodic convolution
- (B) linear convolution
- (C) periodic convolution
- (D) nonlinear convolution
- i. Estimate of power density spectrum is called
 - (A) auto-correlation
- (B) randomization

(C) periodogram

- (**D**) spectrogram
- j. FIR filter is always stable because all of its pole(s) are
 - (A) At the origin

(B) At the infinity

(C) At the ROC

(D) None of the above

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. Explain the process of D/A conversion with an example. **(8)**

- b. The sequence $x(n) = \cos(n\pi/4)$, $-\infty < n < \infty$; was obtained by sampling a continuous-time signal $x_c(t) = \cos(\Omega_0 t)$, $-\infty < t < \infty$; at a sampling rate of 1000 samples/ sec. What are two possible positive values of Ω_0 that could have resulted in the sequence x(n)?
- Q.3 a. Discuss the minimum phase system in detail.

(8)

- b. Determine the frequency response of systems with rational system functions given by $H(z) = \frac{1}{(1 - re^{j\theta}z^{-1})(1 - re^{-j\theta}z^{-1})}$. Also, plot pole-zero diagram. (8)
- **Q.4** a. What is Transposition? Discuss transposed forms of structures with suitable example. **(8)**
 - b. Consider a causal LTI system S with impulse response h(n) and system function $H(z) = \frac{(1 - 2z^{-1})(1 - 4z^{-1})}{z(1 - 0.5z^{-1})}$
 - (i) Draw a direct form II flow graph for the system S.
 - (ii) Draw the transposed form of the flow graph in part (i).

(8)

Code: AE77/AC77 Subject: DIGITAL SIGNAL PROCESSIN

Q.5 a. Discuss the Kaiser Window filter design method.

b. Design a Butterworth low-pass filter using Bilinear Transformation concept for the following specifications:

$$0.9 \le |H(e^{j\omega})| \le 1, \quad 0 \le |w| \le 0.2 \pi$$

$$|H(e^{j\omega})| \le 0.18, \quad 0.3\pi \le |w| < \pi.$$

Assume $T_d = 1$. Also, assume additional data if required.

Q.6 a. Write short note: Sampling of Fourier Transform.

(8)

b. For a sequence $x(n) = \{ \underline{1}, 0.5 \}$ and $h(n) = \{ \underline{0.5}, 1 \}$ is given. Obtain linear convolution using DFT.

(8)

Q.7 a. Define FFT. Also, explain Chirp Transform Algorithm.

(8)

b. Develop Decimation In Frequency algorithm for N=4 and draw signal flow graph.

(8)

Q.8 a. Explain Fourier analysis of stationary random signal.

(8)

b. Discuss the time-dependent Fourier Transform with a suitable example.

(8)

Q.9 a. Explain with an example how bandpass signals are represented using Hilbert transform.

(8)

b. Explain the Kaiser Window design of Hilbert Transformer.

(8)