

Zer Chouse the correct of the best alternative in the following:

a. Which of the following layer developed first during fabrication?

(A) Source	(B) Drain
(C) Gate	(D) Metal Contact

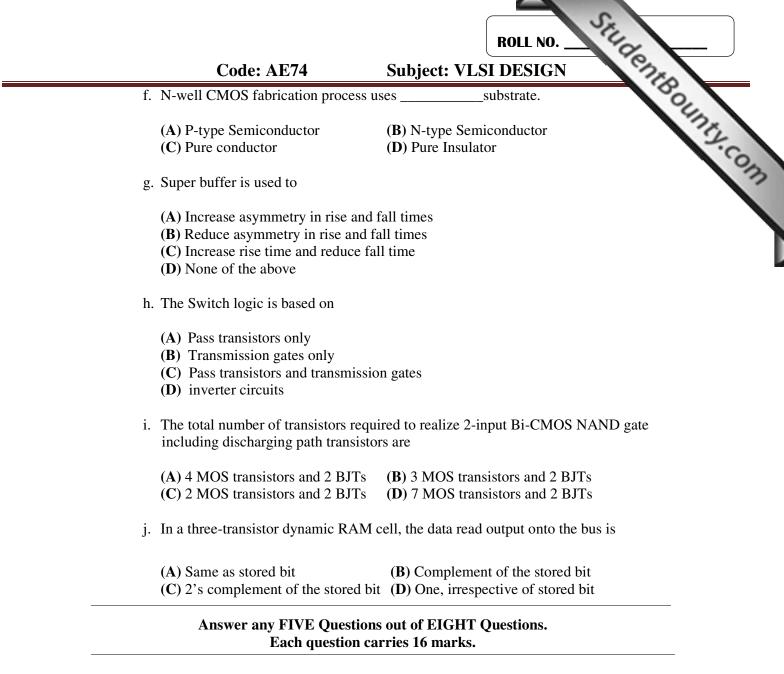
b. The Gate capacitance of a MOS Transistor is given by

(A) $\frac{\epsilon_{\text{ins}}\epsilon_0 \mu}{D}$	$(\mathbf{B}) \; \frac{\in_{\mathrm{ins}} \in_{\mathrm{O}} \mathrm{A}}{\mathrm{V}_{\mathrm{gs}}}$
(C) $\frac{\epsilon_{\text{ins}}\epsilon_0 A}{I_{\text{ds}}}$	$(\mathbf{D}) \stackrel{\in_{\mathrm{ins}}\in_{\mathrm{O}} \mathrm{WL}}{\mathrm{D}}$

c. The Trans-conductance of a MOS device can be increased by increasing its

(A) Length	(B) Threshold Voltage
(C) Width	(D) Oxide thickness

d. Two NMOS pass transistors with $V_t = 1.2V$ are connected in cascade such that drain of first is connected to source of the next and gate of both MOS are connected to 5V. The Output voltage V_o is


(A) 2.6V	(B) 3.8V
(C) 1.2V	(D) 0V

e. The sheet resistance of a square is ______ to its thickness.

(A) inversely proportional	(B) directly proportional
(C) not related	(D) equal

AE74 / DEC _ 2011

1

- Q.2 a. Explain the action of N-MOS Enhancement mode transistor for different values of V_{gs} and V_{ds} . (8)
 - b. What are the advantages of E-beam masks? Differentiate between Raster scanning and Vector scanning. (4)
 - c. Draw the cross-sectional view of p-well CMOS inverter and indicate the input, output and supply voltages. (4)

Q.3 a. Calculate the threshold voltage with ϵ_{si} =11.7, ϵ_{ox} =3.9 for an N-MOS transistor

with
$$N_A = 2 \times 10^{17} / \text{cm}^3$$
, $t_{ox} = 190 \text{ Å}^\circ$. Assume $\Phi_{ms} = -0.85 \text{V}$, $N_i = 1.45 \times 10^{10} / \text{cm}^3$
and $Q_{fc} = Q_{ss} = V_{SB} = 0$. (8)

b. Explain the CMOS inverter transfer characteristics by highlighting the regions of operation of the MOS transistor. (8)

AE74 / DEC _ 2011

2

		Code: AE74 Subject: VLSI DESIGN	1974
Q.4	a.	Discuss λ -based n-MOS design rules for wires and contacts.	(8) 60
	b.	Describe the monochrome stick encoding of:	32
		(i) Simple n-well based BiCMOS inverter(ii) 2-input CMOS NAND gate.	(8)
Q.5	a.	Derive the expressions for rise time and fall time of CMOS inverter and	
		that $\tau_r = 2.5 \tau_f$ for equal n and p-transistor geometries.	(8)
	b.	Find the static on-state resistance of a 4:1 N-MOS inverter and minimum s CMOS inverter. (Assume on resistance of minimum sized NMOS enhance transistor as $10K\Omega$)	
	c.	Draw the circuit of non inverting type N-MOS super buffer.	(2)
Q.6	a.	 Obtain the Scaling Factors for the following Device Parameters: (i) Switching energy per gate (ii) current density (iii) gate delay (iv) gate capacitance 	(8)
	b.	Realize 4:1 multiplexer using N-MOS switches.	(4)
	c.	Show that for an 8:1 N-MOS inverter with minimum sized pull-down tran the on state power dissipation is 0.28 mw . (Power supply = 5V)	usistor, (4)
Q.7	a.	Discuss the linking of the subunits using one bus, two bus and three architectures with suitable diagrams.	ee bus (8)
	b.	Design a single bit adder and implement 4-bit ALU functions using elements.	adder (8)
Q.8	a.	What are the system timing considerations?	(6)
	b.	Explain with circuit diagram the functioning of a three-transistor dynamic RAM cell. What are the conditions for no power dissipation in the cell?	(6)
	c.	What are noise margins? Write the CMOS inverter noise margin equations the help of CMOS inverter transfer characteristics.	with (4)
Q.9		Write short notes on (Any <u>FOUR</u>): (4	×4)
		 (i) CAD tools for VLSI design (ii) Design for testability (iii) Testing sequential logic (iv) Built-In-Self-Test (BIST) (v) Ground rules for successful design. 	