ROLL NO. Code: AE72 Subject: MICROWAVE THEORY AND TECHN

AMIETE - ET (NEW SCHEME)

Time: 3 Hours

DECEMBER 2011

Max. Marks: 100

 (2×10)

NOTE: There are 9 Questions in all.

- studentBounty.com • Please write your Roll No. at the space provided on each page immediately after receiving the Question Paper.
- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.

• Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

a. The free space wave length for a 9 GHz signal is

(A) 10 cms	(B) 20 cms
(C) 3.33 cms	(D) 5 cms

b. A directional coupler is _____ port junction.

(A) 5 port junction	(B) 3 port junction
(C) 2 port junction	(D) 4 port junction

c. The cutoff wave length for TE_{m.0} mode is given by _____

(A)
$$\lambda_{o} = \frac{2}{\sqrt{(m_{a}^{\prime})^{2} + (n_{b}^{\prime})^{2}}}$$
 (B) $\lambda_{o} = \frac{4a}{m^{2} + n^{2}}$
(C) $\lambda_{o} = \frac{2a}{m}$ (D) $\lambda_{o} = \frac{2a}{\sqrt{m^{2} + n^{2}}}$

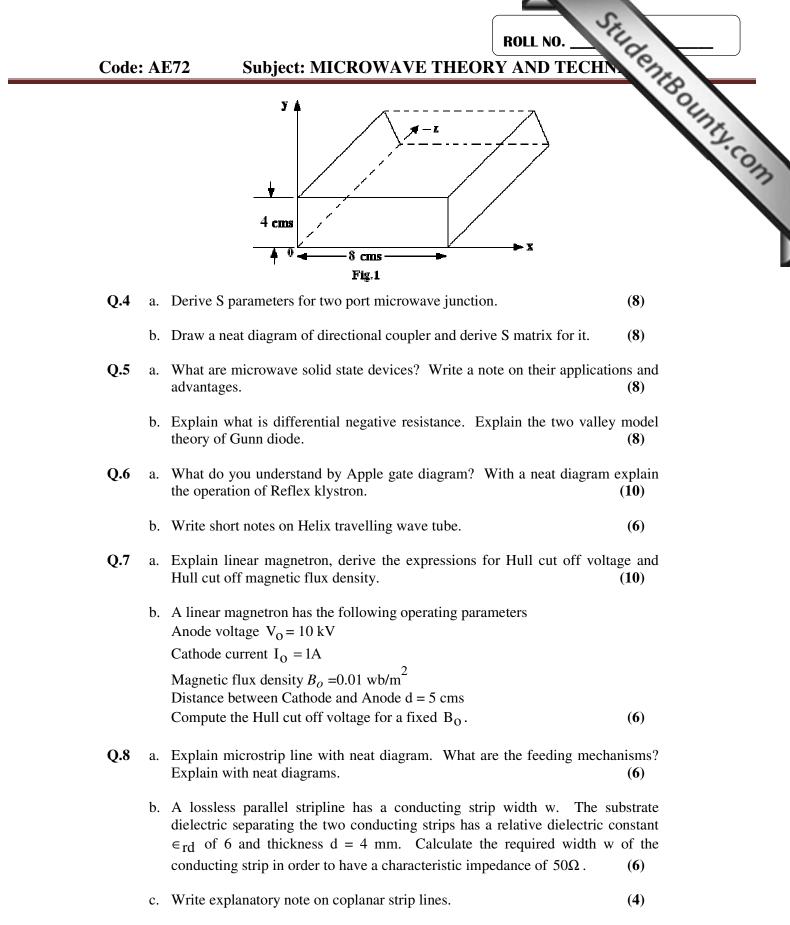
d. Wave guides have advantages over coaxial line because _____

(A) mechanical simplicity and much higher operating frequency (B) power losses in wave guide is more (C) wall reflections (D) it does not require matching

e. In a microstrip line the propagating mode is _____

(A) a pure TM mode (C) the same as waveguide mode

(B) a quasi TEM mode (**D**) a TE mode only


AE77 / DEC _ 2011

1

	ROLL NO.
Code: AE72 Subject: MICROV	WAVE THEORY AND TECHN
f. A uniline or isolator is a de	evice Country
(A) a ferrite loaded 2 port device(C) 4 port device	ROLL NO
g. When a transmission line is terms impedance represents	inated by an impedance, called characteristic
(A) short circuit(C) infinite line	(B) open circuit(D) finite line
h. An X band reflex klystron operates in the frequency range	
(A) 8 to 12 GHz(C) 4 to 6 GHz	 (B) 20 to 50 GHz (D) 100 MHz - 200 MHz
i. A klystron oscillator	
 (A) act as a signal source in microwave generators (B) used in optical fiber communication (C) not suitable for microwave applications (D) not suitable for frequency modulation 	
j. A device which exhibits negative re	esistance it is possible to used as
(A) an oscillator(C) mixer	(B) an amplifier(D) All of them

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2	a.	What are the different types of transmission lines used? Explain them with neat figures. (4)
	b.	Derive transmission line equations for voltage and current. (6)
	c.	Explain Smith Chart and explain how a normalized impedance can be obtained from it. (6)
Q.3	a.	Arrive at the solution of wave equations in a rectangular co-ordinates. Discuss the three distinct cases of propagation constant in the waveguide. (10)
	b.	 An air filled rectangular waveguide operates in dominant TE₁₀ mode as shown in Fig.1. Its inside dimensions are 8×4 cms. Calculate (i) Cut off frequency (ii) Find the phase velocity of the wave at 4 GHz (iii) Determine the guide wave length at the same frequency. (6)
۸ ۵ 7 2	יח /	C _ 2011 2 AMIETE _ ET (NEW/ CCHEME)

Q.9 What are the fabrication techniques involved in MMIC? (6) a.

С

Code: AE72 Subject: MICROWAVE THEORY AND TECHN

- b. What are planar capacitor film? Explain with neat figures.
- StudentBounty.com c. An integrated capacitor fabricated on a GaAs substrate has the following parameters

ROLL NO.

No of fingers	N = 8
Relative dielectric	$\epsilon_{\rm r} = 13.10$
Const of GaAs	
Substrate height	h = 0.254 cm
Finger length	$\ell = 0.00254 \text{cms}$
Finger base width	w = 0.051 cms
$A_1 = 0.089 pF/cm$	$A_2 = 0.10 \text{pF/cm}$
Is the contribution of	is the contribution of 2 external
Interior finger for	fingers for $h > w$
h > w	

Compute the capacitance of the interior finger.

(4)

A MIETE _ FT (NEW COUFME)

Λ